• 제목/요약/키워드: power prediction

Search Result 2,151, Processing Time 0.123 seconds

A Study on Air Pollution Prediction Using Adaptive Lattice Altorithm (적응격자 알고리즘을 이용한 대기오염 예측에 관한 연구)

  • 홍기용;김신도;김성환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.52-56
    • /
    • 1986
  • In this paper a adaptive LMS(least mean-square) lattice predictor, which is composed of the adaptive lattice algorithm and LMS algorithm by Widrow-Hopf, is used to predict the future air pollution of the extraordinary levels in the environmental system. This prediction algorithm is applied to the one-step forward prediction of atmospheric CO concentration by using real observed data. Computer simulation proves that the power in the forward error sequences decreases as the number of stages in the lattice is increased.

  • PDF

Fatigue Life Analysis of Composite Materials (복합재료의 피로수명 해석)

  • 이창수;황운봉;박현철;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.268-271
    • /
    • 1999
  • Fatigue life Prediction is investigated analytically based on the fatigue modulus concept. Fatigue modulus degradation rate at any fatigue cycle was assumed as a power function of number of fatigue cycles. New stress function describing the relation of initial fatigue modulus and elastic modulus was used to account for material non-linearity at the first cycle. It was assumed that fatigue modulus at failure is proportional to applied stress level. A new fatigue life prediction equation as a function of applied stress is proposed. The prediction was verified experimentally using cross-ply carbon/epoxy laminate (CFRP) tube.

  • PDF

Prediction of Acoustic Loads Generated by KSR-III Propulsion System (KSR-III 로켓의 추진기관에 의한 음향 하중 예측)

  • Park, Soon-Hong;Chun, Young-Doo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.384.1-384
    • /
    • 2002
  • Rocket propulsion systems generate very high level noise (acoustic loads), which is due to supersonic jet of rocket propulsion system. In practice, the sound power level of rocket propulsion systems is over 180 ㏈. This high level noise excites rocket structures and payloads, so that it causes the structural failure and electronic malfunctioning of payloads. Prediction method of acoustic loads of rocket enables us to determine the safety of payloads. (omitted)

  • PDF

Present and Future of the Shipboard Noise Prediction (선박소음 예측기술의 현황과 발전방향)

  • Kim, Jae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.477-478
    • /
    • 2010
  • It was in the mid-1980s when the shipboard noise analysis was introduced to the Korean shipbuilding industry. Since then through the continued efforts of the industries in the last decades, native computational codes dedicated to the shipboard noise prediction have been developed based on empirical formula and/or sophisticated theories such as SEA and PFM. This paper addresses some problems in dealing with predicting shipboard noise and the way how to overcome the uncertainties in the prediction.

  • PDF

Development of models for the prediction of electric power supply-demand and the optimal operation of power plants at iron and steel works

  • Lee, Dae-Sung;Yang, Dae-Ryook;Lee, In-Beum;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.106-111
    • /
    • 1992
  • In order to achieve stable and efficient use of energy at iron and steel works, a model for the prediction of supply and demand of electric power system is developed on the basis of the information on operation and particular patterns of electric power consumption. The optimal amount of electric power to be purchased and the optimal fuel allocation for the in-house electric power plants are also obtained by a mixed-integer linear programming(MILP) and a nonlinear programming (NLP) solutions, respectively. The validity and the effectiveness of the proposed model are investigated by several illustrative examples. The simulation results show the satisfactory energy saving by the optimal solution obtained through this research.

  • PDF

A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand (수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구)

  • Ko, Jong-Min;Yang, Il-Kwon;Song, Jae-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

A Study on Prediction and Adjustment of Disputes Amount of Power Generated by the PV System by the Peripheral Structure Shadow (주변 구조물의 일조방해로 발생한 음영에 의한 태양광 발전 시스템 발전량 예측 및 분쟁 조정(안)에 대한 연구)

  • Oh, Min-Seok;Kim, Gi-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.11-22
    • /
    • 2019
  • The first case of the Central Environmental Dispute Mediation Committee, which recently decided to repay the builder for damaging the solar power plant due to the obstruction of the sunshine of new buildings, came out. Even if the Respondent complies with the provisions of the Building Act, the decision of the Complainant can be considered to have been made in light of the fact that the applicant's power plant has suffered from sunlight damage. However, since the extent of the damage may differ depending on the weather, the decision is reserved, and there is room for additional disputes on a regular basis because the loss of power generation to be continuously generated is not reflected in the future. Therefore, in this study, we try to find the direction of dispute adjustment by summarizing the issues related to the generation of power generation due to the influence of shading through the analysis of the case of dispute related to sunlight related to the PV system.

A Modeling of CMOS Inverter for Maximum Power Dissipation Prediction (CMOS 인버터의 최대 전력소모 예측을 위한 모델링)

  • 정영권;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1057-1060
    • /
    • 1998
  • Power Dissipation and circuit speed become the most importance parameters in VLSI system maximum power dissipation for VLSI system design. We remodeled CMOS inverter according to the operating region, saturation region or linear regin, and calculate maximum power dissipation point of CMOS inverter. The result of proposed maximum power dissipation model compared with those from SPICE simulation which results that the proposed maximum power dissipation model has the error rate within 10% to SPICE simulation.

  • PDF

Vibration Power Flow Analysis of Coupled Shell Structures (연성된 쉘 구조물의 진동 파워흐름해석)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.352.2-352
    • /
    • 2002
  • In this paper, Power Flow Analysis (PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. (omitted)

  • PDF

Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.459-475
    • /
    • 2009
  • This paper presents analytical methodologies for remaining life prediction of plain concrete structural components considering tension softening and size effects. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size effect in the computation of SIF and remaining life prediction have been presented. Numerical studies have been conducted on three point bending concrete beams under constant amplitude loading. The predicted remaining life values with the combination of tension softening & size effects are in close agreement with the corresponding experimental values available in the literature for all the tension softening models.