• Title/Summary/Keyword: power prediction

Search Result 2,176, Processing Time 0.028 seconds

Development of On-Line Life Monitoring System for high-Temperature Header of Fossile Powder Plant Boiler (화력발전소 보일러 고온헤더의 실시간 수명 감시시스템 개발)

  • 윤필기;정동관;윤기봉
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.605-611
    • /
    • 1999
  • Conventional methods for assessing remaining life of critical high temperature components in fossil power plants rely on nondestructive inspection practices and accompanying life analysis based on fracture mechanics By using these conventional methods. It has been difficult to perform uninterrupted in-service inspection for life prediction. Thus, efforts have been made for developing on-line remaining life monitoring systems employing information on the shape of structures, operating variables and material properties. In thus study, a software for on-line life monitoring system which performs real-time life evaluation of a high temperature system headers was developed. The software is capable of evaluating creep and fatigue life usage from the real-time stress data calculated by using temperatures/stress transfer Green functions derived in advance for the specific headers. The major benefits of the developed software life in determining future operating schedule, inspection interval, and replacement plan by monitoring real-time life usage based on prior operating history.

  • PDF

Investigation of short-term stability in high efficiency polymer : nonfullerene solar cells via quick current-voltage cycling method

  • Lee, Sooyong;Seo, Jooyeok;Kim, Hwajeong;Song, Dong-Ik;Kim, Youngkyoo
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2496-2503
    • /
    • 2018
  • The short-term stability of high efficiency polymer : nonfullerene solar cells was investigated by employing a quick (ten cycles) current density-voltage (J-V) cycling method. Polymer : nonfullerene solar cells with initial power conversion efficiency (PCE) of >10% were fabricated using bulk heterojunction (BHJ) films of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5,7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6/7-methyl)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). One set of the BHJ (PBDB-T : IT-M) films was thermally annealed at $160^{\circ}C$ for 30min, while another set was used without any thermal treatment after spin-coating. The quick J-V scan (cycling) measurement disclosed that the PCE decay was relatively slower for the annealed BHJ layers than the unannealed (as-cast) BHJ layers. As a result, after ten cycles, the annealed BHJ layers delivered higher PCE than the unannealed BHJ layers due to higher and more stable trend in fill factor. The present quick J-V cycling method is simple but expected to be useful for the prediction of short-term stability in organic solar cells.

Effect of low frequency motion on the performance of a dynamic manual tracking task

  • Burton, Melissa D.;Kwok, Kenny C.S.;Hitchcock, Peter A.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.517-536
    • /
    • 2011
  • The assessment of wind-induced motion plays an important role in the development and design of the majority of today's structures that push the limits of engineering knowledge. A vital part of the design is the prediction of wind-induced tall building motion and the assessment of its effects on occupant comfort. Little of the research that has led to the development of the various international standards for occupant comfort criteria have considered the effects of the low-frequency motion on task performance and interference with building occupants' daily activities. It has only recently become more widely recognized that it is no longer reasonable to assume that the level of motion that a tall building undergoes in a windstorm will fall below an occupants' level of perception and little is known about how this motion perception could also impact on task performance. Experimental research was conducted to evaluate the performance of individuals engaged in a manual tracking task while subjected to low level vibration in the frequency range of 0.125 Hz-0.50 Hz. The investigations were carried out under narrow-band random vibration with accelerations ranging from 2 milli-g to 30 milli-g (where 1 milli-g = 0.0098 $m/s^2$) and included a control condition. The frequencies and accelerations simulated are representative of the level of motion expected to occur in a tall building (heights in the range of 100 m -350 m) once every few months to once every few years. Performance of the test subjects with and without vibration was determined for 15 separate test conditions and evaluated in terms of time taken to complete a task and accuracy per trial. Overall, the performance under the vibration conditions did not vary significantly from that of the control condition, nor was there a statistically significant degradation or improvement trend in performance ability as a function of increasing frequency or acceleration.

Evaluation of mode-shape linearization for HFBB analysis of real tall buildings

  • Tse, K.T.;Yu, X.J.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-441
    • /
    • 2014
  • The high frequency base balance (HFBB) technique is a convenient and relatively fast wind tunnel testing technique for predicting wind-induced forces for tall building design. While modern tall building design has seen a number architecturally remarkable buildings constructed recently, the characteristics of those buildings are significantly different to those that were common when the HFBB technique was originally developed. In particular, the prediction of generalized forces for buildings with 3-dimensional mode shapes has a number of inherent uncertainties and challenges that need to be overcome to accurately predict building loads and responses. As an alternative to the more conventional application of general mode shape correction factors, an analysis methodology, referred to as the linear-mode-shape (LMS) method, has been recently developed to allow better estimates of the generalized forces by establishing a new set of centers at which the translational mode shapes are linear. The LMS method was initially evaluated and compared with the methods using mode shape correction factors for a rectangular building, which was wind tunnel tested in isolation in an open terrain for five incident wind angles at $22.5^{\circ}$ increments from $0^{\circ}$ to $90^{\circ}$. The results demonstrated that the LMS method provides more accurate predictions of the wind-induced loads and building responses than the application of mode shape correction factors. The LMS method was subsequently applied to a tall building project in Hong Kong. The building considered in the current study is located in a heavily developed business district and surrounded by tall buildings and mixed terrain. The HFBB results validated the versatility of the LMS method for the structural design of an actual tall building subjected to the varied wind characteristics caused by the surroundings. In comparison, the application of mode shape correction factors in the HFBB analysis did not directly take into account the influence of the site specific characteristics on the actual wind loads, hence their estimates of the building responses have a higher variability.

Dynamic Behavior of Buried Pipelines Constructed by Domestic and USA Specifications (국내 및 미국 시방서에 따라 시공된 지중매설관의 동적거동)

  • Jeon, Sang-Soo;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • Lifeline Damages induced by earthquake loading brings not only a structure damage but the communication problems by the interruption of various energy utilities such as electric power, gas, and water resources. Earthquake loss estimation systems in USA and Japan, called as HAZUS (Hazard in US) and HERAS (Hazards Estimation and Restoration Aid System), respectively, have been established for the purpose of efficient responding to the earthquake hazard. Sufficient damage records are required to establish these systems. However, there are insufficient data set of damage records obtained from previous earthquakes in Korea. In this study, according to the construction specifications of the pipelines in both Korea and USA, the behavior of both ductile and brittle pipelines embedded in dense sand overlying various soils, such as clay, sand, and gravel were examined with respect to the pipeline characteristics under various earthquake loadings. The applicability of pipeline damage prediction used in HAZUS program to Korea has been investigated.

Estimation of High-resolution Sea Wind in Coastal Areas Using Sentinel-1 SAR Images with Artificial Intelligence Technique (Sentinel-1 SAR 영상과 인공지능 기법을 이용한 연안해역의 고해상도 해상풍 산출)

  • Joh, Sung-uk;Ahn, Jihye;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1187-1198
    • /
    • 2021
  • Sea wind isrecently drawing attraction as one of the sources of renewable energy. Thisstudy describes a new method to produce a 10 m resolution sea wind field using Sentinel-1 images and low-resolution NWP (Numerical Weather Prediction) data with artificial intelligence technique. The experiment for the South East coast in Korea, 2015-2020,showed a 40% decreased MAE (Mean Absolute Error) than the generic CMOD (C-band Model) function, and the CC (correlation coefficient) of our method was 0.901 and 0.826, respectively, for the U and V wind components. We created 10m resolution sea wind maps for the study area, which showed a typical trend of wind distribution and a spatially detailed wind pattern as well. The proposed method can be applied to surveying for wind power and information service for coastal disaster prevention and leisure activities.

Wind Tunnel Evaluation of Aerodynamic Coefficients of Thuja occidentalis and Mesh Net (풍동실험을 통한 방풍용 서양측백나무와 농업용방풍망의 공기역학계수 평가)

  • Lee, Sojin;Ha, Taehwan;Seo, Siyoung;Song, Hosung;Woo, Saemee;Jang, Yuna;Jung, Minwoong;Jo, Gwanggon;Han, Dukwoo;Hwang, Okhwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.63-71
    • /
    • 2021
  • Windbreak forests, which have a windproof effect against strong winds, are known to be effective in reducing the spread of odors and dust emitted from livestock farms. The effect of reducing the spread of odors and dust can be estimated through numerical models such as computational fluid dynamics, which require aerodynamic coefficients of the windbreaks for accurate prediction of their performance. In this study, we aimed to evaluate the aerodynamic coefficients, Co, C1, C2, and α, of two windbreaks, Thuja occidentalis and a mesh net, through wind tunnel experiments. The aerodynamic coefficients were derived by the relation between the incoming wind speed and the pressure loss due to the windbreaks which was measured by differential pressure sensors. In order to estimate the change in the aerodynamic coefficient concerning various leaf density, the experiments were conducted repeatedly by removing the leaves gradually in various stages. The results showed that the power law regression model more suitable for coefficient evaluation compared to the Darcy-Forchheimer model.

Validation of spent nuclear fuel decay heat calculation by a two-step method

  • Jang, Jaerim;Ebiwonjumi, Bamidele;Kim, Wonkyeong;Park, Jinsu;Choe, Jiwon;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.44-60
    • /
    • 2021
  • In this paper, we validate the decay heat calculation capability via a two-step method to analyze spent nuclear fuel (SNF) discharged from pressurized water reactors (PWRs). The calculation method is implemented with a lattice code STREAM and a nodal diffusion code RAST-K. One of the features of this method is the direct consideration of three-dimensional (3D) core simulation conditions with the advantage of a short simulation time. Other features include the prediction of the isotope inventory by Lagrange non-linear interpolation and the use of power history correction factors. The validation is performed with 58 decay heat measurements of 48 fuel assemblies (FAs) discharged from five PWRs operated in Sweden and the United States. These realistic benchmarks cover the discharge burnup range up to 51 GWd/MTU, 23.2 years of cooling time, and spanning an initial uranium enrichment range of 2.100-4.005 wt percent. The SNF analysis capability of STREAM is also employed in the code-to-code comparison. Compared to the measurements, the validation results of the FA calculation with RAST-K are within ±4%, and the pin-wise results are within ±4.3%. This paper successfully demonstrates that the developed decay heat calculation method can perform SNF back-end cycle analyses.

Time Series Data Analysis using WaveNet and Walk Forward Validation (WaveNet과 Work Forward Validation을 활용한 시계열 데이터 분석)

  • Yoon, Hyoup-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • Deep learning is one of the most widely accepted methods for the forecasting of time series data which have the complexity and non-linear behavior. In this paper, we investigate the modification of a state-of-art WaveNet deep learning architecture and walk forward validation (WFV) in order to forecast electric power consumption data 24-hour-ahead. WaveNet originally designed for raw audio uses 1D dilated causal convolution for long-term information. First of all, we propose a modified version of WaveNet which activates real numbers instead of coded integers. Second, this paper provides with the training process with tuning of major hyper-parameters (i.e., input length, batch size, number of WaveNet blocks, dilation rates, and learning rate scheduler). Finally, performance evaluation results show that the prediction methodology based on WFV performs better than on the traditional holdout validation.

Covid19 trends predictions using time series data (시계열 데이터를 활용한 코로나19 동향 예측)

  • Kim, Jae-Ho;Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.884-889
    • /
    • 2021
  • The number of people infected with Covid-19 in Korea seemed to be gradually decreasing thanks to various efforts such as social distancing and vaccines. However, just as the number of infected people increased after a particular incident on February 20, 2020, the number of infected people has been increasing rapidly since December 2020 by approximately 500 per day. Therefore, the future Covid-19 is predicted through the Prophet algorithm using Kaggle's dataset, and the explanatory power for this prediction is added through the coefficient of determination, mean absolute error, mean percent error, mean square difference, and mean square deviation through Scikit-learn. Moreover, in the absence of a specific incident rapidly increasing the cases of Covid-19, the proposed method predicts the number of infected people in Korea and emphasizes the importance of implementing epidemic prevention and quarantine rules for future diseases.