• Title/Summary/Keyword: power prediction

Search Result 2,193, Processing Time 0.031 seconds

Prediction of Steady-State Stresses within Heat Affected Zone Due to Creep Mismatch in Welded Straight Pipes (직관 용접부의 크리프 특성 불균일에 따른 열영향부 정상상태 응력 예측)

  • Han, Jae-Jun;Kim, Sang-Hyun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.405-412
    • /
    • 2013
  • This paper reports the steady-state stresses within the heat affected zone (HAZ) of a welded straight pipe subject to creep. The creep constants and exponent are varied systematically to see the effect of various mismatches in creep properties on the steady-state creep stresses, via detailed two-dimensional finite element (FE) creep analyses. The weldments consist of the base metal and weld metal with the HAZ, which are characterized using the idealized power creep laws with the same creep exponent. The internal pressure and axial loading are considered to see the effect of the loading mode. To quantify the creep stresses, a creep mismatch factor is introduced as a function of the creep constants and exponent. It is concluded that the ratio of the section-averaged stresses for a mismatched case to those for an evenmatched case are linearly dependent on the mismatch factor. The results are compared with the FE results, including the Type IV region, as well as the R5 procedure.

Fatigue Behavior of STS316L Weldments and Degradation Characteristic Evaluation by Ultrasonic Test (STS316L 용접부의 피로거동 및 초음파시험에 의한 열화특성 평가)

  • Nam, Ki-Woo;Park, So-Soon;Ahn, Seok-Hwan;Do, Jae-Yoon;Park, In-Duck
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2003
  • STS316L had been used as the structural material for energy environmental facilities, because austenite stainless steels like 316L have superior mechanical properties of which toughness, ductility, corrosion resistant and etc. However, those welded structures are receiving severe damage due to increasing of the aged degradation. Most studies until now have been carried out against fatigue behaviors of weldments, and were not well studied on nondestructive evaluation methods. In this study, the fatigue crack propagation behavior of STS316L weldment usually used for vessels of the nuclear power plant was investigated. Also, the degradation characteristics of 316L stainless steel weldments were evaluated by the ultrasonic parameter such as ultrasonic velocity, attenuation factor and time-frequency analysis. The results of this study can be used as a basic data for the prediction of the fatigue crack life of weldments structures without disjointing or stopping service of structures in service.

Improvement of resistance performance of the 4.99 ton class fishing boat (4.99톤 어선의 저항성능 개선)

  • JEONG, Seong-Jae;AN, Heui-Chun;KIM, In-Ok;PARK, Chang-Doo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.446-455
    • /
    • 2017
  • The improvement of resistance performance for the 4.99 ton class fishing boats was shown. The 4.99 ton fishing boats are the most commonly used one in the Korean coastal region. The evaluation of resistance performance was estimated by the Computational Fluid Dynamics (CFD) analysis. The CFD simulation was performed by the validation for various types of bow shapes on the hull. The optimized hull form from the simulation was selected and showed the best resistance performance. This hull type was tested on the towing tank in the National Institute of Fisheries Science (NIFS). The effective horsepower (EHP) was estimated by the resistance test on the towing tank with the bare hull condition. The drag force on the three service speed conditions was obtained for the resistance analysis to power prediction. The measured drag forces are compared with the results from the CFD simulation with one another. As results of the model tests, it was confirmed that the shape of the bow is an important factor in the resistance performance. The effective horsepower decreased about 30% in comparison with the conventional hull form. Also, the resistance performance improved the reduction of required horsepower, which especially contributed to the energy-saving for the fisheries industry. In the CFD analysis, the resistance performance improved slightly. In this case, the ratio of the residual resistance ($C_R$) in the total resistance ($C_T$) was high. Therefore, the CFD analysis was not enough to satisfy with reflection for the free surface and wave form in the CFD procedure. Both model test and CFD calculation in this study can be applied to the initial design process for the coastal fishing vessel.

A Study on Braking Characteristics Control of Carbon Ceramic Composite for Brake Reliability Improvement of Luxury Car and Future Technology Evolution Trend Prediction (고급차의 제동 신뢰성 향상을 위한 카본 세라믹 복합재의 제동 특성 제어 및 향후 기술 진화 트랜드 예측에 관한 연구)

  • Shim, Jaehun;Jeon, Gabbae;Lee, Jounghee;Park, ByeongJoon;Im, Dongwon;Hyun, Eunjae;Jung, Kwangki;Kim, Kijeong;Kim, Hongki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.684-693
    • /
    • 2016
  • The luxury car industry has grown 10.5 % every year from 2010 to 2014. For this reason, it is very important for automotive companies to improve profitability and brand value. High-performance brake systems have become an absolute necessity because of the increase in engine power and customer preference among other factors. Also, competing automotive companies actively reinforce domestic production in order to maintain quality and infrastructure for luxury cars. In this regard, we demonstrated new carbon ceramic brakes to improve brake reliability for luxury cars and to improve the competitiveness of automotive companies. Finally, we propose the next-generation braking technology by predicting technological evolution trends.

A Study on Improvement of Scaling Factor Prediction Using Artificial Neural Network

  • Lee, Sang-Chul;Hwang, Ki-Ha;Kang, Sang-Hee;Lee, Kun-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.534-538
    • /
    • 2003
  • Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed knowledge of the natures and quantities of radionuclides in waste package. Many of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the Indirect method by which the concentrations of DTM (Difficult-to-Measure) nuclide is decided using the relation of concentrations (Scaling Factor) between Key (Easy-to-Measure) nuclide and DTM nuclide with measured concentrations of Key nuclide. In general, scaling factor is determined by using of log mean average (LMA) and regression. These methods are adequate to apply most corrosion product nuclides. But in case of fission product nuclides and some corrosion product nuclides, the predicted values aren't well matched with the original values. In this study, the models using artificial neural network (ANN) for C-14 and Sr-90 are compared with those using LMA and regression. The assessment of models is executed in the two parts divided by a training part and a validation part. For all of two nuclides in the training part, the predicted values using ANN are well matched with the measured values compared with those using LMA and regression. In the validation part, the accuracy of the predicted values using ANN is better than that using LMA and is similar to or better than that using regression. It is concluded that the predicted values using ANN model are better than those using conventional model in some nuclides and ANN model can be used as the complement of LMA and regression model.

  • PDF

Assessment and Analysis of Maintenance Level According to Actual Prediction on the Main Infrastructures of North Korea (북한 주요 인프라 실태 예측에 의한 유지관리 수준 분석 및 평가)

  • Lee, Jeong-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.39-46
    • /
    • 2018
  • After the North-South Korean summit and PyeongChang Winter Olympics, it is recently expected that the North-South economic cooperation plan will be discussed in earnest. And it will be growing interest of the major infrastructure facilities such as roads and railways, and so on North-South Korean. Moreover, most of North Korean facilities have problems related to the safety and functionality of them such as aging, deterioration, and poor maintenance. This study asserts the necessity and importance of infrastructure maintenance in the Korean Peninsula. Therefore, Results of this study, it is appeared that very vulnerable to road, railroad, power/communication, water sewage and needed urgently for improvement. Accordingly, The purpose of this study is to investigate the current status for the whole facilities including the main infrastructure of the North Korean and to evaluate on the maintenance level of infrastructure based on face to face interview refugees of North Korean.

Outlier prediction in sensor network data using periodic pattern (주기 패턴을 이용한 센서 네트워크 데이터의 이상치 예측)

  • Kim, Hyung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.433-441
    • /
    • 2006
  • Because of the low power and low rate of a sensor network, outlier is frequently occurred in the time series data of sensor network. In this paper, we suggest periodic pattern analysis that is applied to the time series data of sensor network and predict outlier that exist in the time series data of sensor network. A periodic pattern is minimum period of time in which trend of values in data is appeared continuous and repeated. In this paper, a quantization and smoothing is applied to the time series data in order to analyze the periodic pattern and the fluctuation of each adjacent value in the smoothed data is measured to be modified to a simple data. Then, the periodic pattern is abstracted from the modified simple data, and the time series data is restructured according to the periods to produce periodic pattern data. In the experiment, the machine learning is applied to the periodic pattern data to predict outlier to see the results. The characteristics of analysis of the periodic pattern in this paper is not analyzing the periods according to the size of value of data but to analyze time periods according to the fluctuation of the value of data. Therefore analysis of periodic pattern is robust to outlier. Also it is possible to express values of time attribute as values in time period by restructuring the time series data into periodic pattern. Thus, it is possible to use time attribute even in the general machine learning algorithm in which the time series data is not possible to be learned.

Polyphase jammer suppression on DS-CDMA forward link using multi-rate techniques (순방향 DS-CDMA시스템에서 Multi-rate 기술을 이용한 협대역 재머 억제 여파기)

  • 김동구;박형일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1707-1717
    • /
    • 1998
  • Polyphase filtering techniques is used to suppress the narrowband jammer signal such as USDC TDMA overlaying the band occupied by DS-CDMA system. In the proposed jammer suppression, the received signal is separated into 64 subchannels in two stages by polyphase filtering and the location of the narrowband jammer signal is determined by measuring each subchannel power and the contaminated subchannels are simply blocked. The $E_{b}/N_{0}$ 0/ improvement of the CDMA system from jammer suppession was outstanding. The $E_{b}/N_{0}$ degradation in comparison with a performance of no jammer is around 0.8dB in the worst case. The results are also compared with those of linear prediction jammer suppression. The implementation of the ployphase jammer suppression requires great amount of data processing and computation compared to linear predication filter. Thus it is more appropriate to implement with a ASIC rather than WITH several DSPs for user terminals of forward link.

  • PDF

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 2 : Nonlinear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 2 : 비선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2012
  • It is very important to predict the nonlinear behavior of combustion instability such as transition phenomena and limit cycle amplitude for fully understanding and controlling the instabilities. These nonlinear instability characteristics are highly dependent upon the flames' nonlinear dynamics in a gas turbine premixed combustor. In this study, nonlinear instability TA(Thermo-acoustic) models were introduced by applying the concept of flame describing function to the thermoacoustic analysis method. As a result of model development, for a given combustor length, the growth rate of instability was greatly affected by the change in amplitude, although the instability frequency was not. Further researches under various operating conditions and model validation on limit cycle amplitude are required.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.