• Title/Summary/Keyword: power prediction

Search Result 2,193, Processing Time 0.037 seconds

Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods

  • Al-Hyali, Emad A.S.;Al-Azzawi, Nezar A.;Al-Abady, Faiz M.H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.733-740
    • /
    • 2011
  • Multiple regression analysis was used for the calculation of pKa values of 15 substituted benzaldoximes by using various types of descriptors as parameters. These descriptors are based on quantum mechanical treatments. They were derived by employing semi-empirical calculation represented by the PM3 model and an Abinitio method expressed by Hartree-Fock(HF) model performed at the 6-311 G(d, p) level of theory. The parameters tested for their ability to represent the variations observed in the experimental pKa(s) are atomic and structural properties including Muliken charges on the atoms of hydroxyl group and C=N bond, the angle $C_6-C_1-C_7$, and length of O-H bond. Molecular properties are also used like energies of HOMO and LUMO, hardness(${\eta}$), chemical potential(${\mu}$), total energy(TE), dipole of molecule(DM), and electrophilicity index(W). The relation between pKa values and each of these parameters of the studied compounds is investigated. Depending on these relations, two sets of parameters were constructed for comparison between the PM3 and HF methods. The results obtained favor the Abinitio method for such applications although both models proved to have high predictive power and have sufficient reliability to describe the effect of substituents on pKa values of benzaldoxime compounds under consideration which is clear from the values of correlation coefficient $R^2$ obtained and the consistency between the experimental and the calculated values.

A Study on the Prediction of Learning Results Using Machine Learning (기계학습을 활용한 대학생 학습결과 예측 연구)

  • Kim, Yeon-Hee;Lim, Soo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.695-704
    • /
    • 2020
  • Recently, There has been an increasing of utilization IT, and studies have been conducted on predicting learning results. In this study, Learning activity data were collected that could affect learning outcomes by using learning analysis. The survey was conducted at a university in South Chung-Cheong Province from October to December 2018, with 1,062 students taking part in the survey. First, A Hierarchical regression analysis was conducted by organizing a model of individual, academic, and behavioral factors for learning results to ensure the validity of predictors in machine learning. The model of hierarchical regression was significant, and the explanatory power (R2) was shown to increase step by step, so the variables injected were appropriate. In addition, The linear regression analysis method of machine learning was used to determine how predictable learning outcomes are, and its error rate was collected at about 8.4%.

A Review on Size, Shape and Velocity of a Bubble Rising in Liquid (총설: 액체 중에서 상승하는 기포의 크기, 형상 및 속도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Accurate prediction of size, shape and velocity of a bubble rising through a liquid pool is very important for predicting the particulate removal efficiency in pool scrubbing, for designing engineering safety features to prepare for severe accidents in nuclear power plants, and for predicting the emission of fission products from MCCI (molten core-concrete interaction) process during severe accidents. In this review article, previous studies on the determination of the size, shape and rising velocity of a bubble in liquid are reviewed. Various theoretical and parameterization formulas calculating the bubble size, shape and velocity from physical properties of liquid and gas flowrate are compared. Recent studies tend to suggest simple parameterizations that can easily determine the bubble shape and rising velocity without iteration, whereas iteration has to be performed to determine the bubble shape and velocity in old theories. The recent parameterizations show good agreement with measured data obtained from experiments conducted using different liquid materials with very diverse physical properties, proving themselves to be very useful tools for researchers in related fields.

Protocol converting method for the Real-time Safety Supervision System in Railway (실시간 철도안전 관제를 위한 프로토콜 변환 방안 연구)

  • Ahn, Jin;Kim, Sung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1335-1341
    • /
    • 2016
  • For the safety of train operation, monitoring & supervisory systems for train, signal, power, communication and facilities is operating independently in another place, so, its sensors are interdependently connected from each other to transfer gathering datas of sensing to control center. A Goal of Real-time railway safety supervision system is to improve the safety oversight efficiency and to prevent accidents by means of hazard prediction based on big data by integrating all of safety sensing data in wayside of railway, and the System is requested acquisition of all of sensing data of safety. So, we need special method of protocol converting for the purpose of integrating all of detecting data concerning safety without any changing application. In this paper we investigate the existing converting method in communication field, and propose a new progress to converting protocol adding function of transfer using XML file, and implemented this algorithm, and tested with example packets, finally.

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

Development of a Safety Assessment Method using Detailed Structural Analysis for Iron-Manufacturing Plant Structures (상세구조해석을 이용한 제철설비구조물 안전성 평가 기술개발)

  • Lee, Man-Seung;Lee, Jae-Myung;Paik, Jeom-Kee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.93-99
    • /
    • 2005
  • Up to date, the life extension of industrial plant structures has been strongly required in the field of iron-manufacturing company, atomic or power generation company and so on. Fault monitoring, maintenance of aging structural components, safety assessment and residual life prediction may be recognized as typical and/or practical methods in terms of life extension methods. Based on the construction of damage scenario, precise analysis method and development of the risk or reliability assessment, a number of studies have been carried out in this viewpoint. In conjunction with the finite element analysis technique, a practical procedure for the safety assessment of iron-manufacturing plant structures was developed in this paper with a particular interest in furnace. By virtue of the detailed finite element analyses for blust furnace under an operational condition, the validity of the proposed procedure for safety assessment was presented.

The Study on Empirical Propagation Path Loss in the Airport Cargo Terminal Environment (공항 화물터미널 환경에서 실험적인 패스 로스에 관한 연구)

  • Kim, Kyung-Tae;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1140-1147
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) Cargo Terminal. We measured one frequency among VHF channel bands. The transmitting site was located at different locations with different heights. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponent at IIA Cargo terminal area were 3.67 and 3.39 respectively in first and second transmitting sites. The deviation of prediction error is 14.42 and 10.38. The new path loss equation at the IIA Cargo terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

Evaluation of Energy Production for a Small Wind Turbine by Considering the Geometric Shape of the Deokjeok-Do Island (덕적도 지형을 고려한 소형풍력발전기 발전량 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Jeon, Wan-Ho;Lim, Tae-Gyun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.629-635
    • /
    • 2014
  • This paper presents annual energy production (AEP) by a 1.5kW wind turbine due to be installed in Deokjeok-Do island. Local wind data is determined by geometric shape of Deokjeok-Do island and annual wind data from Korea Institute of Energy Research at three places considered to be installed the wind turbine. Numerical simulation using WindSim is performed to obtain flow pattern for the whole island. The length of each computation grid is 40 m, and k-e turbulence model is imposed. AEP is determined by the power curve of the wind turbine and the local wind data obtained from numerical simulation. To capture the more detailed flow pattern at the specific local region, Urumsil-maul inside the island, fine mesh having the grid length of 10m is evaluated. It is noted that the input data for numerical simulation to the local region is used the wind data obtained by the numerical results for the whole island. From the numerical analysis, it is found that a local AEP at the Urumsil-maul has almost same value of 1.72 MWh regardless the grid resolutions used in the present calculation. It is noted that relatively fine mesh used for local region is effective to understand the flow pattern clearly.

EVALUATION OF LAGRANGIAN AND EULERIAN APPROACHES FOR PREDICTION OF HEMOLYSIS IN BLOOD PUMPS (혈액펌프내 혈액 변성 예측에 대한 Lagrangian 및 Eulerian 기법의 평가)

  • Hong, S.;Son, C.;Kang, S.;Hur, N.;Kim, W.;Kang, S.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.79-86
    • /
    • 2015
  • A blood pump is an important part of a cardiac assist device. Since the shear rate in blood is known to be a primary factor on hemolysis generation, it has been very important to evaluate hemolysis inside blood pumps for understanding performance and reliability of cardiac assist devices. In this study, hemolysis generation inside blood pumps is analyzed using CFD with power-law based models for the blood damage index(BDI), in order to overcome difficulties in measuring hemolysis by experiment. The BDI values in blood pumps can be evaluated using Lagrangian or Eulerian approaches. In this study, several Lagrangian and Eulerian approaches are compared to estimate the efficiency of the numerical methods in a practice sense. It is found that the Eulerian approaches are advantageous in terms of the efficiency and robustness. Two different Eulerian approaches are used to evaluate the BDI values of a few commercial blood pumps. For the conditions of extracorporeal membrane oxygenator(ECMO) and ventricular assist device(VAD), local generation of hemolysis is analyzed using divided regions of blood pumps, in order to investigate the effects of the pump geometry.

Accelerated Life Evaluation of Propeller Shaft for Forklift Truck (지게차용 추진축의 가속 수명 평가)

  • Kim, Do-Sik;Sung, Baek-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1221-1229
    • /
    • 2014
  • This paper proposes an approach for predicting the fatigue life of a propeller shaft of a forklift truck by an accelerated life test method. The accelerated life test method adopted in this study is the calibrated accelerated life test, which is highly effective in the prediction of the lifetime and enables significant reduction of the test time as well as a quantification of reliability in the case of small sample sizes. First, the fatigue test was performed under two high stress levels, and then, it was performed by setting low stress levels in consideration of the available test time and extrapolation. Major reliability parameters such as the lifetime, accelerated power index, and shape parameter were obtained experimentally, and the experimentally predicted lifetime of the propeller shaft was verified through comparison with results of an analysis of load spectrum data under actual operating conditions.