• Title/Summary/Keyword: power prediction

Search Result 2,176, Processing Time 0.026 seconds

Wind characteristics of Typhoon Dujuan as measured at a 50m guyed mast

  • Law, S.S.;Bu, J.Q.;Zhu, X.Q.;Chan, S.L.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • This paper presents the wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast in Hong Kong. The basic wind speed, wind direction and turbulent intensity are studied at two measurement levels of the structure. The power spectral density of the typhoon is compared with the von Karman prediction, and the coherence between wind speeds at the two measurement levels is found to This paper presents the wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast in Hong Kong. The basic wind speed, wind direction and turbulent intensity are studied at two measurement levels of the structure. The power spectral density of the typhoon is compared with the von Karman prediction, and the coherence between wind speeds at the two measurement levels is found to compare with Davenport's prediction. The effect of typhoon Dujuan on the response of the structure will be discussed in a companion paper (Law, et al. 2006).with Davenport's prediction. The effect of typhoon Dujuan on the response of the structure will be discussed in a companion paper (Law, et al. 2006).

Concrete properties prediction based on database

  • Chen, Bin;Mao, Qian;Gao, Jingquan;Hu, Zhaoyuan
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.343-356
    • /
    • 2015
  • 1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected for prediction on concrete properties. A new database platform (Compos) has been developed, by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs have been applied respectively to identify correlations between the concrete properties (strength, workability, and durability) and the dosage and/or quality of raw materials'. The results showed obvious nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic compressive strength have the best results, because the minimum average relative error (MARE) for 60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete workability takes the second place in which the MARE is less than 15%. Forecasting on concrete durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in this study.

A Research of Prediction of Photovoltaic Power using SARIMA Model (SARIMA 모델을 이용한 태양광 발전량 예측연구)

  • Jeong, Ha-Young;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Hyung-Wook;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.82-91
    • /
    • 2022
  • In this paper, time series prediction method of photovoltaic power is introduced using seasonal autoregressive integrated moving average (SARIMA). In order to obtain the best fitting model by a time series method in the absence of an environmental sensor, this research was used data below 50% of cloud cover. Three samples were extracted by time intervals from the raw data. After that, the best fitting models were derived from mean absolute percentage error (MAPE) with the minimum akaike information criterion (AIC) or beysian information criterion (BIC). They are SARIMA (1,0,0)(0,2,2)14, SARIMA (1,0,0)(0,2,2)28, SARIMA (2,0,3)(1,2,2)55. Generally parameter of model derived from BIC was lower than AIC. SARIMA (2,0,3)(1,2,2)55, unlike other models, was drawn by AIC. And the performance of models obtained by SARIMA was compared. MAPE value was affected by the seasonal period of the sample. It is estimated that long seasonal period samples include atmosphere irregularity. Consequently using 1 hour or 30 minutes interval sample is able to be helpful for prediction accuracy improvement.

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining (예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1119-1126
    • /
    • 2002
  • In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

Power Failure Sensitivity Analysis via Grouped L1/2 Sparsity Constrained Logistic Regression

  • Li, Baoshu;Zhou, Xin;Dong, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3086-3101
    • /
    • 2021
  • To supply precise marketing and differentiated service for the electric power service department, it is very important to predict the customers with high sensitivity of electric power failure. To solve this problem, we propose a novel grouped 𝑙1/2 sparsity constrained logistic regression method for sensitivity assessment of electric power failure. Different from the 𝑙1 norm and k-support norm, the proposed grouped 𝑙1/2 sparsity constrained logistic regression method simultaneously imposes the inter-class information and tighter approximation to the nonconvex 𝑙0 sparsity to exploit multiple correlated attributions for prediction. Firstly, the attributes or factors for predicting the customer sensitivity of power failure are selected from customer sheets, such as customer information, electric consuming information, electrical bill, 95598 work sheet, power failure events, etc. Secondly, all these samples with attributes are clustered into several categories, and samples in the same category are assumed to be sharing similar properties. Then, 𝑙1/2 norm constrained logistic regression model is built to predict the customer's sensitivity of power failure. Alternating direction of multipliers (ADMM) algorithm is finally employed to solve the problem by splitting it into several sub-problems effectively. Experimental results on power electrical dataset with about one million customer data from a province validate that the proposed method has a good prediction accuracy.

Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm (수치 예측 알고리즘 기반의 풍속 예보 모델 학습)

  • Kim, Se-Young;Kim, Jeong-Min;Ryu, Kwang-Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2015
  • Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

Performance Evaluation and Forecasting Model for Retail Institutions (유통업체의 부실예측모형 개선에 관한 연구)

  • Kim, Jung-Uk
    • Journal of Distribution Science
    • /
    • v.12 no.11
    • /
    • pp.77-83
    • /
    • 2014
  • Purpose - The National Agricultural Cooperative Federation of Korea and National Fisheries Cooperative Federation of Korea have prosecuted both financial and retail businesses. As cooperatives are public institutions and receive government support, their sound management is required by the Financial Supervisory Service in Korea. This is mainly managed by CAEL, which is changed by CAMEL. However, NFFC's business section, managing the finance and retail businesses, is unified and evaluated; the CAEL model has an insufficient classification to evaluate the retail industry. First, there is discrimination power as regards CAEL. Although the retail business sector union can receive a higher rating on a CAEL model, defaults have often been reported. Therefore, a default prediction model is needed to support a CAEL model. As we have the default prediction model using a subdivision of indexes and statistical methods, it can be useful to have a prevention function through the estimation of the retail sector's default probability. Second, separating the difference between the finance and retail business sectors is necessary. Their businesses have different characteristics. Based on various management indexes that have been systematically managed by the National Fisheries Cooperative Federation of Korea, our model predicts retail default, and is better than the CAEL model in its failure prediction because it has various discriminative financial ratios reflecting the retail industry situation. Research design, data, and methodology - The model to predict retail default was presented using logistic analysis. To develop the predictive model, we use the retail financial statements of the NFCF. We consider 93 unions each year from 2006 to 2012 to select confident management indexes. We also adapted the statistical power analysis that is a t-test, logit analysis, AR (accuracy ratio), and AUROC (Area Under Receiver Operating Characteristic) analysis. Finally, through the multivariate logistic model, we show that it is excellent in its discrimination power and higher in its hit ratio for default prediction. We also evaluate its usefulness. Results - The statistical power analysis using the AR (AUROC) method on the short term model shows that the logistic model has excellent discrimination power, with 84.6%. Further, it is higher in its hit ratio for failure (prediction) of total model, at 94%, indicating that it is temporally stable and useful for evaluating the management status of retail institutions. Conclusions - This model is useful for evaluating the management status of retail union institutions. First, subdividing CAEL evaluation is required. The existing CAEL evaluation is underdeveloped, and discrimination power falls. Second, efforts to develop a varied and rational management index are continuously required. An index reflecting retail industry characteristics needs to be developed. However, extending this study will need the following. First, it will require a complementary default model reflecting size differences. Second, in the case of small and medium retail, it will need non-financial information. Therefore, it will be a hybrid default model reflecting financial and non-financial information.