• 제목/요약/키워드: power plant fault

검색결과 242건 처리시간 0.026초

발전소 보일러 제어기에 적용한 Fault tolerant control System의 연구 (A Case Study on Fault Tolerant Control System for Power Plant Boiler Controller)

  • 김지홍;조현용;정명진;변증남
    • 대한전자공학회논문지
    • /
    • 제24권1호
    • /
    • pp.28-34
    • /
    • 1987
  • As a means of improving the reliability of a process control system, a FTCS(Fault Tolerant Control System) is designed and applied to the boiler controller of a thermal power plant. The proposed FTCS has capabilities of fault detection and diagnosis as well as back-up control and bumpless switching. A prototype of FTCS is implemented on an IBM PC as an add-on system and it is experimentally verified by using a boiler process simulator together with simplified analog controllers and a switching unit that an one-fold fault is detected in real time and back-up controller takes over the role of the original controller, controlling the faulty loop.

  • PDF

Simplification of the Plant Models in PSA

  • Kim, Myung-Ro;Lee, Beom-Su;Kang, Sun-Koo
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.499-504
    • /
    • 1996
  • Current Probabilistic Safety Assessment (PSA) techniques are not usually utilized for day-to-day applications in nuclear power plants. The major reason for this anomaly is the complexity of plant models developed for PSA studies and the multitude of resulting fault trees. This impediment can be overcome by the use of simplified plant models. However, oversimplified models usually result in loss of valuable information and therefore. simplification approaches have to be used judiciously in order to achieve accurate and meaningful results. For this reason. development of an appropriate simplification approach must be performed using extreme caution followed with results verification in sequence as well as system levels. If there are no significant differences between the simplified and the original models, the simplified model can be efficiently used in the application of the PSA. This paper presents a methodology for how to develop a suitable simplification technique and the results of its verification for sample systems and sequences. The results show that the utilization of simplified plant models will significantly reduce the number of fault trees with no significant loss of accuracy.

  • PDF

최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어 (Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault)

  • 박건;김진호;강용철
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

다중화 구조 제어시스템에 대한 신뢰도 분석 (Reliability Analysis of Redundant Architecture of Dependable Control System)

  • 노진표;박재현;손광섭;김동훈
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.328-333
    • /
    • 2013
  • Since a slight malfunction of control systems in a nuclear power plant may cause huge catastrophes, such control systems usually have multiple redundancy and reliable features, and their reliability and availability should be analyzed and verified thoroughly. This paper performed the reliability analysis of the SPLC (Safety Programmable Logic Controller) that is under developed as the control systems for the next generation nuclear power plant. One of the key features of SPLC is that it has multiple redundancy modes as faults happen, which means the reliability analysis for one fixed redundant model is not enough to analyze the reliability of SPLC. With considering this reconfigurable concept, FTA (Fault Tree Analysis) was used to capture fault-relationship among sub-modules. The analysis results show that MTTF (Mean Time to Fault) of SPLC is 45,080 hours, which is a about 4.5 times longer than the regulation, 10,000 hours.

데이터마이닝 기법을 이용한 신경망 기반의 화력발전소 보일러 튜브 누설 고장 진단에 관한 연구 (A Study on Fault Diagnosis of Boiler Tube Leakage based on Neural Network using Data Mining Technique in the Thermal Power Plant)

  • 김규한;이흥석;정희명;김형수;박준호
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1445-1453
    • /
    • 2017
  • In this paper, we propose a fault detection model based on multi-layer neural network using data mining technique for faults due to boiler tube leakage in a thermal power plant. Major measurement data related to faults are analyzed using statistical methods. Based on the analysis results, the number of input data of the proposed fault detection model is simplified. Then, each input data is clustering with normal data and fault data by applying K-Means algorithm, which is one of the data mining techniques. fault data were trained by the neural network and tested fault detection for boiler tube leakage fault.

소형 열병합 발전소의 계통연계시 방향성 과전류 및 지락과전류 계전기의 적용 검증 연구 (A Study of Verification on Application of Directional OCR and OCGR for Power System with Small Scale Cogeneration)

  • 이희태;조만영;김재철
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.944-950
    • /
    • 2008
  • When small cogenerators are operated in connected with power system, there are many positive aspects such as the reduction of power plant construction, making a improvement of power security etc. At the same time, there are some negative effects or difficulties such as we should make sure of protective coordination, especially, Actually these are not fault, but it is likely to consider the current as the fault. This is one of major causes of malfunctions for protective relays in power distribution system which is including interconnection point. Thus, in this paper, We showed that the directional protection is necessary to the dispersed generation system which is including connection point. We also executed contingency analysis to find out the magnitude of fault current and direction which are classified by fault points, length of line and kinds of faults using ETAP power system analysis program.

초기 다중고장 실시간 진단기법 개발 및 고리원전 적용 (Real-Time Diagnosis of Incipient Multiple Faults with Application for Kori Nuclear Power Plant)

  • Chung, Hak-Yeong;Zeungnam Bien
    • Nuclear Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.670-686
    • /
    • 1995
  • 본 논문의 저자는 원자력 발전소와 같은 복잡한 대규모의 시스템의 실시간 고장진단 방법을 1994년 IEEE TNS Vol. 41, No. 4 호[1]에 발표하였다. 이번 논문에서는 고장전파모델(FPM)로서 같은 'Timed SDG Model' 를 사용하고 있으나 고장전파시간( FPT)을 에메논리 개념을 이용하여 정확하게 구하기 어려운 FPT을 실질적으로 이용할 수 있도록 했으며, 또한 고장전파확율(FPP)개념을 도입하여 하나이상의 고장원인 절점 (Node)들을 절점고장율과 더불어, 보다 효과적으로 판별할 수 있도록 했다. 또 FPM내에서 고장의 전파확율를 고려함으로서 보다 실질적인 고장 진단방법을 제시하였으며 본 제안된 방법을 고리 원전 2호기 1차계통에 적용하여 1차계통 FPM내의 각 FPP이 ‘1’인 경우에 한하여 그 성능을 입증하여 보았다.

  • PDF

Vital area identification for the physical protection of NPPs in low-power and shutdown operations

  • Kwak, Myung Woong;Jung, Woo Sik
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2888-2898
    • /
    • 2021
  • Vital area identification (VAI) is an essential procedure for the design of physical protection systems (PPSs) for nuclear power plants (NPPs). The purpose of PPS design is to protect vital areas. VAI has been improved continuously to overcome the shortcomings of previous VAI generations. In first-generation VAI, a sabotage fault tree was developed directly without reusing probabilistic safety assessment (PSA) results or information. In second-generation VAI, VAI model was constructed from all PSA event trees and fault trees. While in third-generation VAI, it was developed from the simplified PSA event trees and fault trees. While VAIs have been performed for NPPs in full-power operations, VAI for NPPs in low-power and shutdown (LPSD) operations has not been studied and performed, even though NPPs in LPSD operations are very vulnerable to sabotage due to the very crowded nature of NPP maintenance. This study is the first to research and apply VAI to LPSD operation of NPP. Here, the third-generation VAI method for full-power operation of NPP was adapted to the VAI of LPSD operation. In this study, LPSD VAI for a few plant operational states (POSs) was performed. Furthermore, the operation strategy of vital areas for both full-power and LPSD operations was discussed. The LPSD VAI method discussed in this paper can be easily applied to all POSs. The method and insights in this study can be important for future LPSD VAI that reflects various LPSD operational states. Regulatory bodies and electric utilities can take advantage of this LPSD VAI method.

A Clustering-Based Fault Detection Method for Steam Boiler Tube in Thermal Power Plant

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.848-859
    • /
    • 2016
  • System failures in thermal power plants (TPPs) can lead to serious losses because the equipment is operated under very high pressure and temperature. Therefore, it is indispensable for alarm systems to inform field workers in advance of any abnormal operating conditions in the equipment. In this paper, we propose a clustering-based fault detection method for steam boiler tubes in TPPs. For data clustering, k-means algorithm is employed and the number of clusters are systematically determined by slope statistic. In the clustering-based method, it is assumed that normal data samples are close to the centers of clusters and those of abnormal are far from the centers. After partitioning training samples collected from normal target systems, fault scores (FSs) are assigned to unseen samples according to the distances between the samples and their closest cluster centroids. Alarm signals are generated if the FSs exceed predefined threshold values. The validity of exponentially weighted moving average to reduce false alarms is also investigated. To verify the performance, the proposed method is applied to failure cases due to boiler tube leakage. The experiment results show that the proposed method can detect the abnormal conditions of the target system successfully.

초전도전류제한기의 초전도 전력시스템에서의 운전방안 (The Operating Method of Superconducting Fault Current Limiter for Total Superconducting Power System)

  • 홍원표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.764-767
    • /
    • 1996
  • Design & operation of power system for meeting increase of electric power demands is becoming more difficult and complex. One of reasons is increase of fault current. As one of the most effective methods for suppressing the fault currents, installation of SFCL are expected. An image of future hybrid & total SC power system which have introduced SC generator cable transformer, fault current limiter, SMES & shunt reactor, etc. are presented. In the SC power system, it is pointed that a SFCL should play an, important part of quenching current level coordination to prevent the other SC devices from quench.

  • PDF