• Title/Summary/Keyword: power meter

Search Result 532, Processing Time 0.025 seconds

The Kinematic Comparison and Analysis between National Long Jumpers and Foreign long Jumpers with record of over 8 meter (국외 8m 이상 멀리뛰기 선수와 국내 선수들의 운동학적 비교 분석)

  • Ryu, Jae-Kyun;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.133-142
    • /
    • 2005
  • The purpose of this study was to compare of the kinematic variables from takeoff preparation to takeoff used by long jumpers who recorded over 8meters in 2002 Busan Asian Game and 2003 Daegu Universiade and 2001 national championship. The kinematic characteristics from the last three stride to takeoff at the takeoff board were analyzed such as velocities, heights and angles. The conclusion were as follows; In order to record over 8meters the national long jumpers should have under 5cm height variation at the penultimate stride of the run-up. In the approach phase the horizontal velocity of the jumpers should reach to 10m/s in touchdown at takeoff board The vertical velocity must have 3.75m/s simultaneously in order to record 8meters. The jumpers need to continue talent of the horizontal velocity in touchdown at takeoff board and require jumping power of the takeoff leg at takeoff board The appropriate body variation range ratio between takeoff and touchdown should be 1.2 vs 1 and the trunk angle at touch down on the board should be close to the erect posture for higher body flight.

Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 1 - Design Guideline) (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 1 - 설계지침))

  • 한승철;이화조;김은찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.69-76
    • /
    • 2004
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

Investigation on the In-Cylinder Flow of 5-Valve Gasoline Engine by Using Two Color PIV Method (이색 PIV 기술을 이용한 5밸브 가솔린엔진 연소실 내의 유동특성 분석)

  • Lee, Gi-Hyeong;U, Yeong-Wan;Park, Sang-Chan;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.238-244
    • /
    • 2002
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These engines have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, in-cylinder flow patterns were visualized with laser sheet method and velocity profiles at near intake valves were inspected by using a two-color PIV. In addition, steady flow tests were performed to quantify tumble ratio of flow-fields generated by a tumble control valve(TCV). Experimental results of steady flow test show that the cure of tumble ratio in intake 3-valve engine farmed as a S shape with valve lift changes. This tendency is different from the one in intake 2-valve engine. Using laser sheet method and two color PIV method, we can find that the intake flow through upper valve increases and the velocity gradient also slightly increases as valve lift increases. From this study, the in-cylinder flow characteristics around intake valves were made clearly.

Experimental study on the discharge coefficients and cavitation of conical orifices (원추형 오리피스의 유출계수와 캐비테이션에 관한 실험적 연구)

  • Kim, Byeong-Chan;Yun, Byeong-Ok;Park, Bok-Chun;Jo, Nam-O;Ji, Dae-seong;Jeong, Baek-Sun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1371-1379
    • /
    • 1997
  • The high pressure drop is frequently required in the by-pass line of the pump or of the heat exchanger in power plants. However, cavitation produced by a high pressure drop could damage the pipe and pump blades. Conical orifices are adopted to reduce cavitation due to high pressure drop. The discharge coefficients of conical orifice plates were measured by weighing method in the standard water flow system. The discharge coefficients were larger when the ratios of thickness of orifice edge to throat diameter were larger. The noise generated from a conical orifice due to cavitation was measured with a sound level meter and a hydrophone. With increasing the bore diameter of the orifice, the sound pressure level or the noise level due to cavitation became higher. The noise level was suddenly increased at the inception of cavitation.

Development of intelligent model to predict the characteristics of biodiesel operated CI engine with hydrogen injection

  • Karrthik, R.S.;Baskaran, S.;Raghunath, M.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.367-379
    • /
    • 2019
  • Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.

Experimental Study on Effects of PAG Oil for $CO_2$ Evaporation Heat Transfer (PAG 오일이 $CO_2$ 증발열전달에 미치는 영향에 관한 실험적 연구)

  • Lee, Sang-Jae;Kim, Dae-Hoon;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.357-363
    • /
    • 2008
  • In order to investigate $CO_2$ heat transfer coefficient and pressure drop by PAG oil concentration during $CO_2$ evaporation, the experiment on evaporation heat transfer characteristics in a horizontal micro-fin tube was performed. The experimental apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes($400{\sim}1200\;kg/m^2s$), heat fluxes($10{\sim}30\;kW/m^2$) and saturation temperatures ($-5{\sim}5^{\circ}C$), and PAG oil concentration($0{\sim}5\;wt%$). The variation of the heat transfer coefficient was different in accordance with the oil concentration. With the increase of the oil concentration, the evaporation heat transfer coefficient decreased and the delay of dryout by oil addition was found. Pressure drop increased with the increase of the oil concentration and heat flux, and the decrease of saturation temperature.

A SOFT-SENSING MODEL FOR FEEDWATER FLOW RATE USING FUZZY SUPPORT VECTOR REGRESSION

  • Na, Man-Gyun;Yang, Heon-Young;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 2008
  • Most pressurized water reactors use Venturi flow meters to measure the feedwater flow rate. However, fouling phenomena, which allow corrosion products to accumulate and increase the differential pressure across the Venturi flow meter, can result in an overestimation of the flow rate. In this study, a soft-sensing model based on fuzzy support vector regression was developed to enable accurate on-line prediction of the feedwater flow rate. The available data was divided into two groups by fuzzy c means clustering in order to reduce the training time. The data for training the soft-sensing model was selected from each data group with the aid of a subtractive clustering scheme because informative data increases the learning effect. The proposed soft-sensing model was confirmed with the real plant data of Yonggwang Nuclear Power Plant Unit 3. The root mean square error and relative maximum error of the model were quite small. Hence, this model can be used to validate and monitor existing hardware feedwater flow meters.

SHIELDED LASER ABLATION ICP-MS SYSTEM FOR THE CHARACTERIZATION OF HIGH BURNUP FUEL

  • Ha, Yeong-Keong;Han, Sun-Ho;Kim, Hyun-Gyum;Kim, Won-Ho;Jee, Kwang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • In modem power reactors, nuclear fuels have recently reached 55,000 MWd/MtU from the initial average burnup of 35,000 MWd/MtU to reduce the fuel cycle cost and waste volume. At such high burnups, a fuel pellet produces fission products proportional to the burnup and creates a typical high burnup structure around the periphery region of the pellet, producing the so called 'rim effect'. This rim region of a highly burnt fuel is known to be ca. $200\;{\mu}m$ in width and is known to affect the fuel integrity. To characterize the local burnup in the rim region, solid sampling in the micro meter region by laser ablation is needed so that the distribution of isotopes can be determined by ICP-MS. For this procedure, special radiation shielding is required for personnel safety. In this study, we installed a radiation shielded laser ablation ICP-MS system, and a performance test of the developed system was conducted to evaluate the safe operation of instruments.

Evaluation of Ice Adhesion Strength on the Oxidation of Transmission Line ACSR Cable (송전선로 ACSR 케이블의 산화에 따른 결빙 특성 평가)

  • Cho, Hui Jae;Kim, You Sub;Jung, Yong Chan;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.378-384
    • /
    • 2019
  • Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at $500^{\circ}C$ for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15-year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.

Surface Deformation Measurement of the 2020 Mw 6.4 Petrinja, Croatia Earthquake Using Sentinel-1 SAR Data

  • Achmad, Arief Rizqiyanto;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.139-151
    • /
    • 2021
  • By the end of December 2020, an earthquake with Mw about 6.4 hit Sisak-Moslavina County, Croatia. The town of Petrinja was the most affected region with major power outage and many buildings collapsed. The damage also affected neighbor countries such as Bosnia and Herzegovina and Slovenia. As a light of this devastating event, a deformation map due to this earthquake could be generated by using remote sensing imagery from Sentinel-1 SAR data. InSAR could be used as deformation map but still affected with noise factor that could problematize the exact deformation value for further research. Thus in this study, 17 SAR data from Sentinel-1 satellite is used in order to generate the multi-temporal interferometry utilize Stanford Method for Persistent Scatterers (StaMPS). Mean deformation map that has been compensated from error factors such as atmospheric, topographic, temporal, and baseline errors are generated. Okada model then applied to the mean deformation result to generate the modeled earthquake, resulting the deformation is mostly dominated by strike-slip with 3 meter deformation as right lateral strike-slip. The Okada sources are having 11.63 km in length, 2.45 km in width, and 5.46 km in depth with the dip angle are about 84.47° and strike angle are about 142.88° from the north direction. The results from this modeling can be used as learning material to understand the seismic activity in the latest 2020 Petrinja, Croatia Earthquake.