• 제목/요약/키워드: power law index

검색결과 264건 처리시간 0.024초

국내 벤처기업 진화과정에 관한 실증분석 - 코스닥상장 기술벤처기업 분석을 중심으로 - (An Empirical Study on the Size Distribution of Venture Firms in the center of KOSDAQ Listed Companies)

  • 조상섭;양영석
    • 벤처창업연구
    • /
    • 제6권1호
    • /
    • pp.23-37
    • /
    • 2011
  • 본 연구는 우리나라 벤처기업규모의 진화과정이 기존 기업규모에 무 작위적인 진화과정인지 (Gibrat's Law) 또는 자기조직화의 과정을 따를 지(Pareto Law)에 대한 실증분석을 실시하는 데 목적에서 수행되었다. 이 연구목적을 위하여 두 가지 진화과정에 대한 이론적 가능성을 설명하고, 2005년도부터 2008년도까지 92개 코스닥상장 기술벤처기업대상으로 실증적 분석을 실시하였다. 실증분석결과를 간단하게 요약하면 다음과 같다. 첫째, 우리나라 벤처기업규모의 집중도를 나타내는 지니계수변화는 종업원 수의 관점에서 집중도는 2005년도에 비하여 2008년도에 상대적으로 감소하였으나, 매출액 규모에서는 기업규모집중도가 증가하고 있음을 보였다. 둘째, 우리나라 벤처기업규모의 진화과정은 자기조작화의 메커니즘이 작동되는 멱 함수 법칙을 따르는 것으로 나타났다. 추정된 파레토 계수는 1보다 작게 나타났으며, 추정된 계수는 통계적으로 유의한 값을 보였다. 셋째, 우리나라 벤처기업규모의 초기 설립에서부터 장기적 기업성장을 통하여 최상위 기업규모그룹에 속할 수 있는 확률은 6.9%로 전망되었다. 이러한 실증분석결과는 초기에 나타난 벤처기업규모가 장기적 벤처기업진화에 매우 중요한 역할을 수행함을 제시한다.

  • PDF

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.397-422
    • /
    • 2016
  • In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.

Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model

  • Kettaf, Fatima Zohra;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.399-423
    • /
    • 2013
  • In the present study, the thermal buckling behavior of functionally graded sandwich plates is studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally consistent and gives four governing equations. Number of unknown functions involved in displacement field is only four, as against five in case of other shear deformation theories. This present model takes into account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates.

Xanthomonas sp. EPS-1이 생산하는 다당류의 리올로지 특성 (Rheological Properties of Exopolysaccharide Produced by Xanthomonas sp. EPS-1)

  • 손봉수;박석규;강신권;이상원;성낙계
    • 한국미생물·생명공학회지
    • /
    • 제23권3호
    • /
    • pp.269-274
    • /
    • 1995
  • For the screening of a new functional exopolysaccharide, sugar composition and rheological properties of exopolysaccharide produced from Xanthomonas sp. EPS-1 were investigated. The average molecular weight of exopolysaccharide was determined to be approximately 2.l $\times$ 10$^{6}$ dalton. The new exopolysaccharide EPS-1 was composed of mannose, glucose, galactose and gluco- samine. IR analysis showed that the exopolysaccharide EPS-1 was assumed to be polymer with carbohydrates. NMR analysis showed that exopolysaccharide EPS-1 was presumed to be 4 units of sugar and trace of CH$_{3}$ group. Exopolysaccharide EPS-1 solution showed a characteristic of non-Newtonian fluid properties. At the concentration of 1.0%, the consistency index and the flow behavior index were shown at 10.8352 poise-sec and 0.4419, respectively. All dispersions were pseudoplastic fluids described accurately by Power-law model. Exopolysaccharide EPS-1 was highly viscous at low concentration, with good stability over a wide range of pH 5 to 13. The excellent compatibility of exopolysaccharide EPS-1 was represented with salts such as sodium chloride.

  • PDF

Static analysis of functionally graded non-prismatic sandwich beams

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Mokhtari, M.
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.165-190
    • /
    • 2018
  • In this article, the static behavior of non-prismatic sandwich beams composed of functionally graded (FG) materials is investigated for the first time. Two types of beams in which the variation of elastic modulus follows a power-law form are studied. The principle of minimum total potential energy is applied along with the Ritz method to derive and solve the governing equations. Considering conventional boundary conditions, Chebyshev polynomials of the first kind are used as auxiliary shape functions. The formulation is developed within the framework of well-known Timoshenko and Reddy beam theories (TBT, RBT). Since the beams are simultaneously tapered and functionally graded, bending and shear stress pushover curves are presented to get a profound insight into the variation of stresses along the beam. The proposed formulations and solution scheme are verified through benchmark problems. In this context, excellent agreement is observed. Numerical results are included considering beams with various cross sectional types to inspect the effects of taper ratio and gradient index on deflections and stresses. It is observed that the boundary conditions, taper ratio, gradient index value and core to the thickness ratio significantly influence the stress and deflection responses.

칡 전분 호화액의 리올로지적 성질 (Rheological Properties of Gelatinized Arrowroot Starch Solution)

  • 김관;윤한교;김성곤;이신영
    • 한국식품과학회지
    • /
    • 제19권4호
    • /
    • pp.300-304
    • /
    • 1987
  • 칡 전분 화화액(4, 5, 6 및 7%)의 리올로지적 성질은 측정온도 $30{\sim}66^{\circ}C$에서 지수법칙에 따랐으며, 의가소성 유동거동을 보였다. 유동거동 지수는 측정온도에 대하여는 거의 비슷한 값을 보였으나, 농도의 증가에 따라 다소 감소하여 의가소성 경향이 증가하였다, 그러나 점조도 지수는 농도의 증가에 따라 증가하였으며, 측정온도에 대하여는 반대의 경향을 보였다. 칡 전분 호화액의 겉보기 점도는 농도의 증가에 따라 지수함수적으로 증가하였고, 활성화에너지는 $4.068{\sim}4.542kcal/mole$이었다.

  • PDF

An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models

  • Hadji, Lazreg;Zouatnia, Nafissa;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.231-241
    • /
    • 2019
  • In this paper, a new higher order shear deformation model is developed for static and free vibration analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present higher-order shear deformation model, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain displacement, stresses and frequencies, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams.

Free vibrational behavior of perfect and imperfect multi-directional FG plates and curved structures

  • Pankaj S. Ghatage;P. Edwin Sudhagar;Vishesh R. Kar
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.367-383
    • /
    • 2023
  • The present paper examines the natural frequency responses of the bi-directional (nx-ny, ny-nz and nz-nx) and multidirectional (nx-ny-nz) functionally graded (FG) plate and curved structures with and without porosity. The even and uneven kind of porosity pattern are considered to observe the influence of porosity type and porosity index. The numerical findings have been obtained using a higher order shear deformation theory (HSDT) based isometric finite element (FE) approach generated in a MATLAB platform. According to the convergence and validation investigation, the proposed HSDT based FE model is adequate to predict free vibrational responses of multidirectional porous FG plates and curved structures. Further a parametric analysis is carried out by taking various design parameters into account. The free vibrational behavior of bidirectional (2D) and multidirectional (3D) perfect-imperfect FGM structure is examined against various power law index, support conditions, aspect, and thickness ratio, and for the curvature of curved structures. The results indicate that the maximum non-dimensional fundamental frequency (NFF) value is observed in perfect FGM plates and curved structures compared to porous FGM plates and curved structures and it is maximum for FGM plates and curved structures with uneven kind of porosity than even porosity.

Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory

  • Mouffoki, Abderrahmane;Bedia, E.A. Adda;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.369-383
    • /
    • 2017
  • In this work, the effects of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is studied by proposing a novel simple trigonometric shear deformation theory. The main advantage of this theory is that, in addition to including the shear deformation influence, the displacement field is modeled with only 2 unknowns as the case of the classical beam theory (CBT) and which is even less than the Timoshenko beam theory (TBT). Three types of environmental condition namely uniform, linear, and sinusoidal hygrothermal loading are studied. Material properties of FG beams are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from Hamilton's principle. Numerical examples are presented to show the validity and accuracy of present shear deformation theories. The effects of hygro-thermal environments, power law index, nonlocality and elastic foundation on the free vibration responses of FG beams under hygro-thermal effect are investigated.

Spectroscopic Study of the X-ray Dip at Pre-eclipse Phase of Hercules X-1

  • Choi, C.S.;Nagase, F.;Makino, F.;Dotani, T.;Min, K.W.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 1992년도 한국우주과학회보 제1권1호
    • /
    • pp.21-21
    • /
    • 1992
  • The X-ray binary pulsar Her X-1 was observed with Ginga on 1988 August 28 during the orbital phase of 0.76 to 0.85 at the main-on phase of the 35 day cycle. During the observations the X-ray intensity varied by a factor of five or more on a time scale as short as 30 sec, due mostly to the soft X-ray absorption in the pre-eclipse phase. From the studies of pulse profiles and energy spectra, we revealed that there exists in the dipphase an unpulsed component which is "3% of the intensity at the non-absorbed high-level. We suggest that scattering of the source continuum by the optically thin hot corona is responsible for the unpoised component. In the spectral analysis, we find that the high-state non-absorbed spectra can be fitted by a power-law without absorption, and the spectra observed in the different abgorption states by two components of a power-law with the same photon index. An iron-K emission line is required in to the cases of fitting. The estimated equivalent width of the iron line varies from 0.18 to 0.51 key according to the change in the absorption column density along the line of sight. We suggest that the fluorescent iron line arises in a cool and relatively small region, like the Alfvensur face, and may be partially intercepted by the optically thick gas cloud passing across the line of sight.1 Korea Astronomy Observatorya The Institute of Space and Astronautical Science in Japan3 Korea Advanced Institute of Science and Technology

  • PDF