• Title/Summary/Keyword: power flow

Search Result 6,142, Processing Time 0.032 seconds

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

A Multi-level Optimal Power Flow Algorithm for Constrained Power Economic Dispatch Control (제약조건을 고려한 경제급전 제어를 위한 다단계 최적조류계산 알고리즘)

  • Song, Gyeong-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.424-430
    • /
    • 2001
  • A multi-level optimal power flow(OPF) algorithm has been evolved from a simple two stage optimal Power flow algorithm for constrained power economic dispatch control. In the proposed algorithm, we consider various constraints such as ower balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the two stage optimization method to an average gain of 2.99 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

Control of PCC Voltage Variation by Reactive Power Compensation of Distributed Source (분산전원의 무효전력 보상을 통한 PCC 전압 변동 제어)

  • Han, Sanghun;Lim, Jong-ung;Han, Yu;Cho, Younghoon;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.180-181
    • /
    • 2017
  • Recently as distributed source has increased, the distribution system has changed from unidirectional power flow to bi-directional power flow. This power flow causes the PCC voltage variation, which can adversely affect voltage sensitive loads. In this paper, the relation between the active power, reactive power and PCC voltage of the distributed source is analyzed, and the PCC voltage control scheme by reactive power compensation is proposed in the distributed source itself. In addition, limitations and conditions according to the standard for interconnecting distributed resources are specified and verified through simulation.

  • PDF

Numerical Investigation on the Applicability of Wave-Induced Swirl Water Chamber for Wave Power Generation in Coastal Water of Korea (파력발전을 위한 파유기 회전수류 유수실의 국내 연안 적용 가능성에 대한 수치해석적 조사)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.32-42
    • /
    • 2013
  • In this paper, a wave-induced swirl water chamber (SWC) for breakwater and wave power generation is introduced and its applicability to wave power generation in the coastal waters of Korea is investigated. The SWC type of wave power generation is a way to drive a turbine using the unidirectional swirl flow that is induced in the back of a curtain wall of a breakwater due to incident waves. The typical wave characteristics are obtained by analyzing the annual statistical wave data from KHOA (Korea Hydrographic and Oceanographic Administration). A numerical analysis is carried out on the variations in the SWC entrance height, wave height, and different installation conditions. For the numerical analysis, a commercial code, Fluent based on FVM, is used. As the entrance height decreases, the mass flow rate through the entrance is rarely changed, whereas the magnitude of the flow velocity of the smaller entrance height is greater than the other ones, which is better for the formation of an SWC swirl flow inside and the flow kinetic energy at the entrance. In cases of installation conditions where a wall is place behind and under SWC, it has been shown that the mass flow rate through the entrance is greater than that in the open condition, and sufficient flow kinetic energy is generated in the entrance for wave power generation. However, the swirl flow kinetic energy is relatively small. Thus, in the future, it is necessary to study the swirl flow generation, which is affected by the SWC shape.

A Study on Efficient Calculation of Effective Reactive Power Reserves Using Sensitivity Analysis

  • Bae, Moonsung;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1689-1696
    • /
    • 2017
  • In recent academic and industrial circles of the Republic of Korea, the securement of available reactive power reserve against the line faults is at issue. Thus, simulations have been performed for the securing of effective reactive power reserve (effective Q) to prepare for the line faults and improve reactive power monitoring and control methods. That is, a research has been conducted for the fast-decoupled Newton-Raphson method. In this study, a method that distinguishes source and sink regions to carry out faster provision of information in the event of line fault has been proposed. This method can perform quantification with the formula that calculates voltage variations in the line flow. The line flow and voltage changes can be easily induced by the power flow calculation performed every second in the operation system. It is expected that the proposed method will be able to contribute to securement of power system stability by securing efficient reactive power. Also, the proposed method will be able to contribute to prepare against contingencies effectively. It is not easy to prepare quickly for the situation where voltage drops rapidly due to the exhaustion of reactive power source by observing voltage information only. This paper's simulation was performed on the large scale Korean power system in steady state.

A Study on the Transient Phenomenon Analysis of Ship Generator Synchronization (선박용 발전기 동기화시의 과도현상 해석에 관한 연구)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan;Lee, Sung-Gun;Jo, Sung-Kab
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.998-1004
    • /
    • 2007
  • Connecting a synchronous generator to a power system is a dynamic process, requiring the coordinated operation of many components and systems. The goal is to connect the oncoming generator to the system smoothly i.e without causing any significant bumps, surges, or power swings, by closing the ACB when the oncoming generator matches the power system in voltage magnitude, phase angle, and frequency. If oncoming generator voltage is not matched to the power system voltage, reactive power will flow either into or out of the system at the instant of ACB closure. If this voltage difference is too great, the reactive power flow may result in high transient stresses that could damage the windings of the generator. Also, if oncoming generator frequency is not matched to the power system frequency, transient power will flow between generator and power system. If the frequency difference is too great, the transient power flow is reflected into the prime mover shaft, and this may result in excessive shaft or coupling stress. This paper tries to prove the necessity of correct synchronization for ship generators through a transient phenomenon analysis.

Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine (횡류수차 노즐형상이 성능과 내부유동에 미치는 영향)

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

Immune Based Intelligent Tuning of the 2-DOF PID Controller for Thermal Power Plant

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.3-101
    • /
    • 2002
  • Contents 1 Abstract- In the thermal power plant, there are six manipulated variables; main steam flow, feedwater flow, air flow, spray flow, fuel flow, and gas recirculation flow. Therefore, the thermal power plant control system is a multi-input and output system. In the control system, the main steam temperature typically is regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. Up to the present time, the PID controller has been used to operate this system. This paper focuses on the characteristic comparison of the PID controller, the modified 2-DOF PID Controller on the DCS, in order to design an optimal...

  • PDF

The improvement method for power plant boiler temperature nonuniformity of heat transfer tube bank flow path (발전용 보일러 전열 튜브 유로내 온도분포 불균일 개선기법)

  • Jung, Hoon;Kim, Bum-Shin;Jang, Suck-Won;Ahn, Yeon-Shik;Park, Gun-Bok;Whang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.837-841
    • /
    • 2001
  • Almost all power plant boiler has temperature distribution nonuniformity problem in heat transfer tube flow path. It can cause hot spot damage of superheated or reheated heat transfer section and reduce maintenance schedule when nonuniformity is severe. There are two solutions for improvement temperature nonuniformity. one is change of gas flow distribution of gas path and the other is contorl steam flow in tube bank. Of course, first method is very difficulty to apply but second method is'nt. In this paper, control steam flow is used to solve temperature nonuniformity of power plant boiler.

  • PDF

A Study on Vibration Power Flow of 2-Dimension Structure Travelling from the Source (진동원으로부터 전달되는 2차원 구조물의 진동파워흐름에 관한 연구)

  • 노영희;김동영;홍도관;권용수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.879-882
    • /
    • 2002
  • To control the vibration and sound of structure, it is important to analyze the dynamic action of structure. And through those analysis, the vibration source and the flow path is understood. To grasp that, when the two-dimension plate structure is shaken by a harmonic point excitation with the natural frequency using the finite element method, this paper presents the relation between vibration power flow and mode shape. As those results present to vector flow, the vibration power flow is visualized.

  • PDF