• 제목/요약/키워드: power equalization

검색결과 148건 처리시간 0.028초

Optimal Design for Dynamic Resistance Equalization Technique to Minimize Power Loss and Equalization Error

  • La, Phuong-Ha;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.50-52
    • /
    • 2019
  • Dynamic resistance equalization is a viable technique to balance SOC of cells in a parallel-connected battery configuration due to high equalization performance, simplicity and low-cost. However, an inappropriate design of the equalization resistor can degrade the equalization performance and increase the power loss. This paper proposes an optimization process to design the equalization resistors to minimize power loss and equalization error. The simulation results show that the optimally designed resistor significantly enhance the performance in comparison with the conventional fixed-resistor equalization.

  • PDF

Development of an Optimized Algorithm for Bidirectional Equalization in Lithium-Ion Batteries

  • Sun, Jinlei;Zhu, Chunbo;Lu, Rengui;Song, Kai;Wei, Guo
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.775-785
    • /
    • 2015
  • Many equalization circuits have been proposed to improve pack performance and reduce imbalance. Although bidirectional equalization topologies are promising in these methods, pre-equalization global equalization strategy is lacking. This study proposes a novel state-of-charge (SoC) equalization algorithm for bidirectional equalizer based on particle swarm optimization (PSO), which is employed to find optimal equalization time and steps. The working principle of bidirectional equalization topologies is analyzed, and the reason behind the application of SoC as a balancing criterion is explained. To verify the performance of the proposed algorithm, a pack with 12 LiFePO4 batteries is applied in the experiment. Results show that the maximum SoC gap is within 2% after equalization, and the available pack capacity is enhanced by 13.2%. Furthermore, a comparison between previously used methods and the proposed PSO equalization algorithm is presented. Experimental tests are performed, and results show that the proposed PSO equalization algorithm requires fewer steps and is superior to traditional methods in terms of equalization time, energy loss, and balancing performance.

A Modularized Charge Equalization Converter for a Hybrid Electric Vehicle Lithium-Ion Battery Stack

  • Park, Hong-Sun;Kim, Chong-Eun;Kim, Chol-Ho;Moon, Gun-Woo;Lee, Joong-Hui
    • Journal of Power Electronics
    • /
    • 제7권4호
    • /
    • pp.343-352
    • /
    • 2007
  • This paper proposes a modularized charge equalization converter for hybrid electric vehicle (HEV) lithium-ion battery cells, in which the intra-module and the inter-module equalizer are Implemented. Considering the high voltage HEV battery pack, over approximately 300V, the proposed equalization circuit modularizes the entire $M^*N$ cells; in other words, M modules in the string and N cells in each module. With this modularization, low voltage stress on all the electronic devices, below roughly 64V, can be obtained. In the intra-module equalization, a current-fed DC/DC converter with cell selection switches is employed. By conducting these selection switches, concentrated charging of the specific under charged cells can be performed. On the other hand, the inter-module equalizer makes use of a voltage-fed DC/DC converter for bi-directional equalization. In the proposed circuit, these two converters can share the MOSFET switch so that low cost and small size can be achieved. In addition, the absence of any additional reset circuitry in the inter-module equalizer allows for further size reduction, concurrently conducting the multiple cell selection switches allows for shorter equalization time, and employing the optimal power rating design rule allows fur high power density to be obtained. Experimental results of an implemented prototype show that the proposed equalization scheme has the promised cell balancing performance for the 7Ah HEV lithium-ion battery string while maintaining low voltage stress, low cost, small size, and short equalization time.

Modularized Charge Equalization Converter for Hybrid Electric Vehicle Lithium-Ion Battery Stack

  • Park, Hong-Sun;Kim, Chong-Eun;Kim, Chol-Ho;Moon, Gun-Woo;Lee, Joong-Hui
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.350-352
    • /
    • 2007
  • Modularized charge equalization converter for HEV lithium-ion battery cells is proposed in this paper, in which intra-module and inter-module charge equalization can be achieved at the same time. For intra-module charge equalization, the conventional flyback DC/DC converters of low power and small size are employed, in which all of the primary sides are coupled in parallel for selective charge of the specific under charged cell within the module. For inter-module charge equalization, the flyback DC/DC converters are also added, in which all the secondary windings are electrically linked in parallel for automatic charge balancing among the modules. An engineering sample of forty cells hiring the proposed cell balancing scheme is implemented and its experimental result shows that the proposed modularized charge equalization circuit has good cell balancing performance.

  • PDF

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

An Adaptive Radial Basis Function Network algorithm for nonlinear channel equalization

  • Kim Nam yong
    • 한국통신학회논문지
    • /
    • 제30권3C호
    • /
    • pp.141-146
    • /
    • 2005
  • The authors investigate the convergence speed problem of nonlinear adaptive equalization. Convergence constraints and time constant of radial basis function network using stochastic gradient (RBF-SG) algorithm is analyzed and a method of making time constant independent of hidden-node output power by using sample-by-sample node output power estimation is derived. The method for estimating the node power is to use a single-pole low-pass filter. It is shown by simulation that the proposed algorithm gives faster convergence and lower minimum MSE than the RBF-SG algorithm.

Individual Charge Equalization Converter Using Selective Two Current Paths for Series Connected Li-ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.274-276
    • /
    • 2008
  • This paper proposes an individual charge equalization converter using selective two current paths for series connected lithium-ion battery strings. In the proposed equalizer, a central equalization converter acting as a controllable current source is sequentially connected in parallel with individual batteries through an array of cell selection switches. A flyback converter with a modified rectifier realizes a controllable current source. A central equalization converter is shared by every battery cells through the cell selection switch, instead of a dedicated charge equalizer for each cell. With this configuration, although the proposed equalizer has one dc-dc converter, individual charge equalization can be effectively achieved for the each cell in the strings. Furthermore, since the proposed equalizer would not allocate the separated dc-dc converter to each cell, such that the implementation of great size reduction and low cost can be allowed. In this paper, an optimal power rating design guide is also employed to obtain a minimal balancing size while satisfying equalization requirements. A prototype for eight lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing small size, and low cost.

  • PDF

주파수 확산과 등화기법을 적용한 적응 OFDM에 대한 부 반송파 블록 전력 제어 (Subcarrier Block Power Control for Adaptive Downlink OFDM with Frequency Spreading and Equalization)

  • 김남수;조성호
    • 한국통신학회논문지
    • /
    • 제31권3A호
    • /
    • pp.214-220
    • /
    • 2006
  • 본 논문에서는 TPC-AMS/FSS-OFDM(transmit power controlled adaptive modulated OFDM with frequency symbol spreading and equalization)시스템을 제안한다. TPC-AMS/FSS-OFDM의 송신기에서 각 S/P(serial-to-parallel)변환된 신호는 직교 확산 코드에 의해 확산 결합되어 송신하고, 수신된 신호는 수신기의 각 주파수 심볼 확산 블록에 의하여 검출되며, 같은 SINR(signal interference to noise ratio)을 얻는다. 이 때 각 주파수 심볼 확산블록에 대해서는 같은 변조 레벨과 송신 전력을 할당할 수 있다. 본 논문에서 제안한 시스템은 전체 송신 전력과 데이터 정보로 전송되는 FBI(feedback information), MLI(modulation level information)를 감소시킴으로서 전체적인 전송속도(throughput)의 성능을 개선할 수 있다.

Two-Stage Charge Equalization Scheme for Hybrid Electric Vehicle Lithium-Ion Battery Cells

  • Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-hui
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.241-243
    • /
    • 2007
  • Two-stage charge equalization scheme for HEV lithium-ion battery string is proposed with the optimal power rating design rule in this paper, where in the first stage the over charged energy of higher voltage cells is drawn out to the single common output capacitor and then, that discharged energy is recovered into the overall battery stack in the second stage. To achieve charge equalization of sort, the conventional flyback DC/DC converters of low power and minimized size are employed. The industrial sample employing both the proposed two-stage cell balancing scheme and the optimal power rating design rule shows good cell balancing performance with reduced size as well as low voltage stresses of the electronic devices.

  • PDF

Cell Balancing Scheme with Series Coupling of Multiple Primary Windings for Hybrid Electric Vehicle Lithium-Ion Battery Cells

  • Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.347-349
    • /
    • 2007
  • Charge equalization scheme for HEV lithium-ion battery system is proposed in this paper, where all the primary windings with in parallel bi-directional switches are coupled in series to provide the equalizing energy from the whole battery string to the specific under charged cells. Moreover, to realize minimized size of equalization circuit employing the proposed cell balancing scheme, the optimal power rating design rule according to equalization time and SOC distribution of imbalance is proposed. A prototype of HEV lithium-ion battery system of four cells shows the outstanding charge equalization performance while maintaining greatly reduced size of cell balancing circuit.

  • PDF