• Title/Summary/Keyword: power disturbances

Search Result 454, Processing Time 0.037 seconds

A study on power control of nuclear reactor using revised two-level costate prediction method (개선된 two-level costate prediction method를 이용한 원자로 출력 제어)

  • 천희영;박귀태;이희정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.244-247
    • /
    • 1986
  • A revised two-level costate prediction algorithm is developed for the optimization of nonlinear nuclear power plant. The algorithm is proved to converge very well, and appears to require substantially small computation time and storage than previous nonlinear optimization algorithm. To cope with unknown external disturbances, we construct a closed loop control system. In order to get a smaller sampling time, this paper proposes the two-level Kalman filter.

  • PDF

Precise Position Synchronous Control of Two-Axes System Using Two-Degree-of-Freedom PI Controller in BLDC Motor (2자유도 PI 제어기를 이용한 2축 BLDC 모터 시스템의 정밀 위치동기 제어)

  • Yoo, S.K.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.104-113
    • /
    • 2001
  • This paper describes a precise position synchronous control of two axes rotating system using BLDC motors and a cooperative control based on decoupling technique and PI control law. The system is required performances both good speed following and minimum position synchronous errors simultaneously. To accomplish these goals, the three kinds of controllers are designed. At first, the current and speed controller are designed very simply to compensate the influences of disturbances and to follow up speed references quickly. Especially, the two degree of freedom PI controller is used considering both good tracking for speed reference input and quick rejection of disturbances in speed controller. Finally, a position synchronous controller is designed as a simple proportional controller to minimize position synchronous errors. The validity of the proposed method is confirmed through some numerical simulations. Moreover, the results are compared to the conventional master-slave control ones to show the effectiveness of the proposed system.

  • PDF

Finite-Time Nonlinear Disturbance Observer Based Discretized Integral Sliding Mode Control for PMSM Drives

  • Zheng, Changming;Zhang, Jiasheng
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1075-1085
    • /
    • 2018
  • To deal with the operation performance degradation of permanent magnet synchronous machine (PMSM) drives with uncertainties and unmodeled dynamics, this paper presents a finite-time nonlinear disturbance observer (FTNDO) based discretized integral sliding mode (DISM) composite control scheme. Based on the reaching-law approach, a DISM speed controller featuring a superior dynamic quality and global robustness against disturbances is constructed. This controller can avoid the reaching phase and overlarge control action. In addition, a sliding mode differentiator based FTNDO is devised and extended to the discrete-time domain for disturbance estimation. The attractive features of the FTNDO are that it can provide a finite-time converging estimation and alleviate the chattering effect in conventional sliding mode observers, while retaining robustness to parameter variations. By feeding the estimate forward to the pre-stage DISM controller, both disturbances and chattering can be significantly suppressed. Moreover, considering the estimation error of a FTNDO caused by discrete sampling, a stability analysis of the composite controller is discussed. Experimental results validate the superiority of the presented scheme.

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

Development of a Self-tuning Fuzzy-PID Controller for Water Level of Steam Generator (증기발생기 수위제어를 위한 자기동조 퍼지 PID 제어기 개발)

  • Han, Jin-Wook;Lee, Chang-Goo;Han, Hoo-Seuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1251-1258
    • /
    • 1999
  • The water level control of a steam generator in the unclear power plant is an important process. Most of the water level controllers of the actual plant are PID controllers. But they have limitations in appling for tracking the set point and getting rid of disturbances, so there are some defects to apply in the actual ground even though many research works represented the resolutions to solve it. In this paper, it is suggested that the established simple PID controller in low power has the ability to remove disturbances and trace the set-point, and then possesses the real-time self-tuning function according to the variety of moving peculiarity of a plant. This function realized by making use of fuzzy logic. PID parameters are formulated by a variable ${\alpha}$ and made it fluctuate by a fuzzy inference according to level error and level error change. This mechanism makes application of actual plant effective as well as taking advantage of improving the efficiency of water level controller by way of adding the function of self-tuning instead of replacing PID controller. The computer simulation of this scheme shows the improved performance compare to conventional PID controller.

  • PDF

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

A Fuel Cell System with Z-Source Inverter and Ultracapacitors (Z-소스 인버터와 울트라커패시터를 이용한 연료전지 시스템)

  • Kim, Yoon-Ho;Lee, Uk-Young;Kim, Soo-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • When input parameters like gas volume or load of the fuel cell system is changed, the fuel cell system can generate transient voltage disturbances. In this paper, a fuel cell system with Z-source inverter and ultracapacitors for voltage disturbance compensation is proposed. The structure of Z-source inverter is simple. It has unique features that can boost/buck input voltage with a DC/DC converter using only a modified switching pattern. The characteristics of the proposed topologies for the fuel cell system with Z-source inverter and ultracapacitors are analyzed using simulation, and verified by experiments. The simulation and experimental results show that the proposed system is capable of operating with stable response to the system transient and voltage disturbances.

Incremental Passivity Based Control for DC-DC Boost Converters under Time-Varying Disturbances via a Generalized Proportional Integral Observer

  • He, Wei;Li, Shihua;Yang, Jun;Wang, Zuo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.147-159
    • /
    • 2018
  • In this paper, the voltage tracking control of a conventional DC-DC boost converter affected by unknown, time-varying circuit parameter perturbations is investigated. Based on the fundamental property of incremental passivity, a passivity based control law is designed. Then, to obtain a better disturbance rejection property, two generalized proportional integral (GPI) observers are employed to estimate the time-varying uncertainties in the output voltage and inductor current channels, and the estimated values are applied as feedforward compensation. Moreover, the global trajectory tracking performance of a system with disturbances is ensured under the composite controller. Finally, simulation and experiment studies are provided to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed controller delivers a promising disturbance rejection capability as well as a good nominal tracking performance.

Power Disturbance Classifier Using Wavelet-Based Neural Network

  • Choi Jae-Ho;Kim Hong-Kyun;Lee Jin-Mok;Chung Gyo-Bum
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.307-314
    • /
    • 2006
  • This paper presents a wavelet and neural network based technology for the monitoring and classification of various types of power quality (PQ) disturbances. Simultaneous and automatic detection and classification of PQ transients, is recommended, however these processes have not been thoroughly investigated so far. In this paper, the hardware and software of a power quality data acquisition system (PQDAS) is described. In this system, an auto-classifying system combines the properties of the wavelet transform with the advantages of a neural network. Additionally, to improve recognition rate, extraction technology is considered.

Development of Power Supply Device for Load Characteristic Experimentation (부하특성실험을 위한 전원공급장치 개발)

  • Lee, Jong-Pil;Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • The reduced power quality due to some of disturbances on power system has great influence on the efficient and life of load for bad with serious economic loss. The response of load about disturbance needs to analysis quantitatively in detail to improve load characteristics. In this research, a power supply device is developed to supply disturbed power similar to that of power system. The developed device can output a voltage and frequency from 180[V] to 240[V], 55[Hz] to 65[Hz] respectively. The most outstanding feature of this device is a function to be performed steady and dynamic state characteristic experiment on load or appliances. Also, this device is designed to include high accuracy ouput and simple measurement.