• Title/Summary/Keyword: power distribution line

Search Result 812, Processing Time 0.03 seconds

A Study on High Impedance Fault Detection using Wavelet Transform and Neural-Network (웨이브릿 변환과 신경망 학습을 이용한 고저항 지락사고 검출에 관한 연구)

  • Hong, Dae-Seung;Ryu, Chang-Wan;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.856-858
    • /
    • 1999
  • The analysis of distribution line faults is essential to the proper protection of power system. A high impedance fault(HIF) dose not make enough current to cause conventional protective device. It is well known that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional Protection system. This paper describes an algorithm using neural network for pattern recognition and detection of high impedance faults. Wavelet transform analysis gives the time-scale information. Time-scale representation of high impedance faults can detect easily and localize correctly the fault waveform.

  • PDF

A Study on High Impedance Fault Detection using Wavelet Transform and Chaos Properties (웨이브릿 변환과 카오스 특성을 이용한 고저항 지락사고 검출에 관한 연구)

  • Hong, Dae-Seung;Yim, Hwa-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2525-2527
    • /
    • 2000
  • The analysis of distribution line faults is essential to the proper protection of power system. A high impedance fault(HIF) dose not make enough current to cause conventional protective device operating, so it is well known that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional protection system. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents detections in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents which represent geometrical self-similarity are calculated. Wavelet transform analysis is applied the time-scale information to fault signal. Time-scale representation of high impedance faults can detect easily and localize correctly the fault waveform.

  • PDF

Temperature Analysis of electric arc at Power Distribution line (전선에서 아크불티의 온도변화 분석)

  • Kim, Dong-Myung;Song, Il-Keun;Kwon, Tae-Ho;Hwang, Kwang-Soo;Park, Kyong-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.90-92
    • /
    • 2005
  • When the jacket damaged conductors in 22.9kV-y overhead distribution lines are contacted with the metal material by strong wind, which, leads to are melting as well as faults accordance. The duration of the arc temperature due to flame effected by weather and flash over conditions. In order to simulated the worst conditions, the ACSR-OC($58mm^2$) used as specimen was artificially cut in no wind. After contacting the two cut conductors again the testing current was applied. thus, the changes in temperature of are flame was analyzed.

  • PDF

A Case Study on Malfunction of OCGR and Inaccuracy of Watt-hour Meter in Distributed Generation System (분산형 발전고객의 OCGR오동작 및 과부족 계량에 대한 사례연구)

  • Shin, Dong-Yeol;Park, Yong-Woo;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1349-1355
    • /
    • 2008
  • The paper shows the analysis of operating conflict of OCGR trip events and metering errors in the photovoltaic generation, wind generation distributed generation customers with no defect of the distributed generation facilities, which are connected to 22.9kV distribution lines. To analyze problems with metering errors and OCGR fault event, a power quality analyzer and PSIM program were used to test the field and to simulate in Sun-Cheon photovoltaic generation and Seo-Cheon photovoltaic generation customers. With the trial distribution line, the result of analysis was verified to prove with the same situation of the actual field. This paper suggests short term and long term countermeasures of OCGR fault events, analysis of over and shortage of metering errors in distributed generation customers.

Domestic Efforts for SFCL Application and Hybrid SFCL (국내 초전도 한류기 요구와 하이브리드 초전도 한류기)

  • Hyun, O.B.;Kim, H.R.;Yim, Y.S.;Sim, J.;Park, K.B.;Oh, I.S.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • Choi, In-Hyuk;Park, Joon-Young;Kim, Tae-gyun;Yoon, Yong-Beum;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.207-210
    • /
    • 2017
  • The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.

Development of Corona Cage Measurement System for Simulation on Electrical Environmental Characteristics of HVDC Overhead Transmission Line (HVDC 가공 송전선로 전기환경특성 모의시험용 코로나 케이지 계측시스템 개발)

  • Kil, Gyung-Suk;Yang, Kwang-Ho;Lee, Sung-Doo;Ju, Mun-No
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.245-249
    • /
    • 2006
  • Corona characteristics of conductors are dependent on the electric field conditions in the immediate vicinity of the conductors. In case of DC transmission line, particularly, the space charge plays an important role in the electric field distribution. Therefore, DC corona cage simulation is necessary for long-term test in the same conditions. This paper presents the results of designing and constructing hardwares such as DC power supply, measurement system and DAS to carry out the simulation. The corona cage longitudinally is divided into five equal length sections and three inner sections of those are isolated from the ground of outer cage. The measurement items are radio noise, corona current, television noise, audible noise and meteorological conditions. In the next step, various simulations about the type and configuration of two or three candidate conductors will be conducted. And then finally an environmentally-friendly conductor for HVDC overhead transmission line will be decided.

Design of Advanced Static Var Compensator(ASVC) for Distribution Line (배전선로 적용을 위한 새로운 무효전력보상치(ASVC)의 설계)

  • Min, Wan-Ki;Lee, Sang-Hun;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2010-2012
    • /
    • 1997
  • A cascade multilevel voltage source inverter is introduced to apply the advanced static var compensator(ASVC) for large scale power application. This cascade M-level inverter consists of (M-1)/2 single-phase full bridges. This inverter is suitable to the flexible ac transmission systems(FACTS) including SVC, series compensation and phase shifting. It can solve the problems of conventional transformer -based multipulse inverters and multilevel diode-clamped inverters. From the simulation results, the validity of ASVC with cascade multilevel inverter is shown for high power application.

  • PDF

A Chaotic Pattern Analysis of High Impedance Faults (고저항 지락 사고의 카오스 패턴 해석)

  • Ko, Jae-Ho;Bae, Young-Chul;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.542-544
    • /
    • 1997
  • The analysis of distribution line faults is essential to the proper protections in the power system. A high impedance fault does not make enough current to cause conventional protective devices. In this paper, Fractal dimensions are estimated for distinction between normal status and fault status in the power system. Application of the concepts of the fractal geometry to analyze chaotic properties of high impedance fault current was described. In addition, to analyze variation of fault current and normal current on phase plane, embedding state variables are reconstructed from 1 dimensional time series.

  • PDF

Protection Coordination to Protect the Superconducting Cable in Icheon Substation (이천 변전소 초전도 케이블 보호를 위한 보호협조 방안에 관한 연구)

  • Lee, Han-Sang;Suh, Jae-Wan;Jung, Chang-Ho;Yang, Byung-Mo;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.501-502
    • /
    • 2011
  • Based on the several advantages of high-temperature superconducting cable, there are many researches about HTS cable. In the aspect of power system engineering, since it has very low impedance, approximately zero, it is profitable for large capacity distribution line into the large scale load. In the step of its verifications, the HTS cable had been installed in Icheon substation and operated. In this paper, the protection coordination for Icheon substation had been designed and verified using PSCAD/EMTDC.

  • PDF