• Title/Summary/Keyword: power distribution line

Search Result 812, Processing Time 0.032 seconds

Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources (계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술)

  • Jeong Min Park
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

Security Monitoring System for Apartment House Building Using Paver Line Carrier (전력선 통신을 이용한 집단주택 안전관리 시스템)

  • Kim, In-Soo;Kim, Kwan-Ho;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.476-478
    • /
    • 1993
  • Instead of installing new communication wiring to each house in the apartment house building. the power distribution network. which is already installed in the building. can be use as communication medium. In a safty management, by adoption of power line communication system, at remote we can monitor safty related sensors such as fire, gas leakage, burglar intrusion and emergency call which are located at each house. From this viewpoint, we developed security monitoring system for apartment house building using power lines. Security monitoring system consists of Power Line Communication-Sub Controller (PLC-SC). Power Line Communication-Main Controller (PLC-MC) and Management System (MS). Between a PLC-MC and a PLC-SC, the transmission rate is 1200 bps in power lines and modulation technique is frequency shirt keying (FSK). In between a PLC-MC and a MS, the transmission rate is 1200 bps in communication line (RS-485). As a result of this research. transmission loss is 0.1dB per meter of intrabuilding distribution network. Transmission can be reach in 250 meters. So it is enough to communicate for security monitoring system in apartment house building.

  • PDF

Fault Location Algorithms for the Line to Ground Fault of Parallel-Circuit Line in Power Systems (전력계통 송배전선로 2회선 1선지락사고 고장거리 검출 알고리즘)

  • 최면송;이승재;강상희;이한웅
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.29-35
    • /
    • 2003
  • This paper presents a fault location algorithm when there are parallel circuits in power system networks. In transmission networks, a fault location method using the distribution factor of fault currents is introduced and in distribution networks a method using direct 3-phase circuit analysis is developed, because the distribution networks are unbalanced. The effect of parallel circuits in fault location is studied in this paper. The effect is important for the range of protecting zones of distance relay in transmission networks and fault location in distribution networks. The result of developed fault location algorithm shows high accuracy in the simulation that using the EMTP.

Development of Control Algorithm of D-STATCON(Distribution STATic-CONden: Compensations of Voltage Flicker and Harmonics (전압 플리커 및 고조파 보상을 위한 배전용 STATCON의 제어알고리즘 개발)

  • Jeon, Y.S.;Oh, K.I.;Lee, K.S.;Choo, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1282-1286
    • /
    • 1999
  • This paper presents the DQ transfomation and space vector modulation method to develop a control algorithm of distribution STATCON(STATic CONdenser) for line voltage regulation, dc link voltage regulation and harmonics compensation. The Performance analysis of a PI with ramp comparision and synchronous reference frame current controller is carried out. Based on these analysis, the control performances are desirable to compensate the harmonics and to regulate de link and line voltage of Distribution line.

  • PDF

The Originating Characteristics of Periodic Impulse Noises in the Data Communication System by Distribution Line Carrier Method (배전선반송 데이타통신에서의 주기적 임펄스노이즈의 발생특성)

  • 최순만;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 1994
  • The existence of peroodic impulse noises in distribution line carrier (DLC) communication system is known to be the most serious obstacle for improving DLC communication quality in reliability and capacity. From the spectral points, impulse noises can be divided into baseband type and modulation type the noise width of whichs are much different each other. With each nose type, this study presents the basic characteristics in relation to what they originate from and how their spectrum properties are revealed. The baseband type impulse noise is normally caused from thyristor circuit running with low switching speed and the modulation type noise from the circuit of switching power supply. The base wave of modulation noise is shown to be the pulsuatic charging current to primary condenser in switching power circuit. The study result indicates also that placing the DLC carrier frequency away the band predominated by modulated noise especially from RCC type switching power circuit is very important in DLC design.

  • PDF

Analysis on the Protective Coordination on Neutral Line of Main Transformer in Power Distribution Substation with Superconducting Fault Current Limiter (MTR 중성점 접지에 초전도 전류제한기 적용시 지락과전류계전기 동작 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Moon, Jong-Fil;Kim, Jae-Chul;Hyun, Ok-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2089-2094
    • /
    • 2009
  • The fault current has increased due to growth of distributed generations for the large power demand in power distribution system. To solve some problem such as excess of the circuit breaker's cut-off ratings, the superconducting fault current limiter(SFCL) has been progressed. However, the operational characteristics of the relay is changed by SFCL. Therefore, the proper impedance for the SFCL should be selected to keep protective coordination with the SFCL when SFCL is introduced on the neutral line of main transformer in distribution system. In this paper, the proper normal conducting resistance was suggested to solve the problem in case of the protection coordination with SFCL.

Optical Power Transfer of Grating - Assisted Directional Coupler with Three - Guiding Channels : TM modes Case

  • Ho, Kwang-Chun;Ho, Kwang-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.149-155
    • /
    • 2004
  • Newly developed modal transmission-line theory(MTLT) is used to analyze rigorously the optical power distribution in grating-assisted directional couplers(GADCs) with three guiding channels. By defining a novel coupling efficiency ${\eta}$ amenable to the rigorous analytical solutions of modal transmission-line theory, we explicitly evaluate the power coupling and distribution of TM modes. The results reveal that the incident power is sensitively partitioned through three output channels in terms of such grating parameters as the grating period, the duty cycle, and the operating wavelength.

A Study of the Charging Current Effect on Underground Distribution Line in Electric Railway (전철 지중배전선로의 충전전류보상에 관한 연구)

  • Kim, Yang-Su;Jang, Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.214-218
    • /
    • 2008
  • Because on the high-tension underground distribution line of an electric railway high voltage XLPE Cable two or three circuits between railway stations with a standard as receiving transformer facilities are established at a $30km{\sim}50km$ interval, reactive power in which the phase of a current is larger than that of a voltage is supplied when trains are not working, so when there are no loading or low loading as night. Due to the long-distance trend of the underground distribution system on an alternating current railway distribution line, the terminal voltage of a transformer is over the standard voltage, and after all, commercial cycle overvoltage is continued. To solve this problem, the shunt reactor is installed in middle of power distribution lines to maintain receiver voltage meted under the allowance regulation through control of the reactive power. Also, in case that the thickness of single cable is over $60mm^2$ and length of line is about over 30km, a circuit breaker is broken by shorting shunt ability of charging current in excess of shunt current(31.5A.rms). Therefore, this thesis presents installing the location of shunt reactor for quantitative analysis by using optimum algorism for compensation and control of the charging current.

  • PDF

A Study on the Effects of Neutral Current by Unbalanced Load in Two Step Type Pole using KEPCO's Distribution System (한전 배전 계통을 이용한 2단장주의 불평형 부하에 따른 중성선 전류의 영향에 관한 연구)

  • Park, K.W.;Seo, H.C.;Kim, C.H.;Jung, C.S.;Yoo, Y.P.;Lim, Y.H.;Lee, W.J.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.465-471
    • /
    • 2007
  • The one step type pole and two step type pole are used in KEPCO's distribution system. The neutral current increases in three-phase four-wire distribution system due to unbalanced load. Usually, power line and communication line are installed at contiguity by effect of topography in Korea. To this end, the damages such as electrostatic induction, electromagnetic induction and harmonic induction generated by induced voltage and current are occured in power line and communication line. This paper calculates the neutral current in KEPCO's distribution system using EMTP by composing various simulated conditions. Also, these results are verified by vector analysis.

Operation Analysis of Novel UPQC(Unified Power Quality Conditioner) without Series Injection Transformers (직렬주입변압기가 없는 새로운 UPQC(Unified Power Quality Conditioner)의 성능분석)

  • Kim H.J.;Bae B.Y.;Jon Y.S.;Han B.M.;Kim H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.251-255
    • /
    • 2003
  • This paper proposes a novel UPQC(unified power quality conditioner) based on H-bridge modules, isolated through single-phase multi-winding transformers. The dynamic performance of proposed system was analyzed by simulation with EMTDC/PSCAD, assuming that the UPQC is connected with the 22.9kV distribution line. The proposed system can be directly connected to the transmission line without series injection transformers. It has flexibility in expanding the operation voltage by increasing the number of H-bridge modules and can compensate reactive power, harmonics, voltage sag and swell, voltage unbalance. The control strategy for the proposing UPQC was derived using the instantaneous power method. The proposing UPQC has the ultimate capability of improving power quality at the point of installation on power distribution systems and can be utilized for the future distribution system.

  • PDF