• Title/Summary/Keyword: power distribution line

Search Result 812, Processing Time 0.031 seconds

Voltage Quality Analysis in Power Distribution System with Superconducting Fault Current Limiter at Grounding Line (초전도 한류기를 주변압기 접지선에 설치시 배전계통의 순간전압품질 분석)

  • Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.159-163
    • /
    • 2013
  • In this paper, voltage quality improvement is analyzed in case of Superconducting Fault Current Limiter (SFCL) installed in grounding line of main transformer in power distribution system. First, a resistive-type SFCL model is used. Next, Korean power distribution system is modeled. Finally, when SFCL is installed in the starting point of feeder and grounding line of main transformer, voltage qualities are evaluated according to various fault locations and resistance values of SFCL using PSCAD/EMTDC. The voltage quality results in case of grounding line are compared with the voltage in case of feeder.

Magnetic Field Distribution of Power Line Using Amorphous Wire (아몰포스선을 이용한 전력선의 자계분포)

  • Moriyama, T.;Cho, M.W.;Hikita, M.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.609-612
    • /
    • 2001
  • To investigate the magnetic field distribution of power line, we used amorphous wire sensor. And we discuss extremely low frequency magnetic field distribution dependent upon arrangement of power line and shielding pipe made from iron or alumimum materials by both measurement and FEM(Finite Element Method) analysis. Appling current of single phase 60 [Hz] 15 [A] is supplied to copper wire coated enamel resign. As the results, we confirmed that linear characteristics of amorphous wire sensor is very excellent and measurement value agrees with FEM calculation. Magnetic field distribution due to shielding materials is changed by permeability and conductivity.

  • PDF

Analysis and Applicability Assessment of Robotic Live-Line Electricity Distribution Technology (로봇을 활용한 배전 활선공법 기술분석 및 적용 타당성 연구)

  • Yang, Seon-Je;Kuc, Tae-Yong;Park, Choon-Sik;Seo, In-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1125-1140
    • /
    • 2018
  • This paper analyzes robotic technology developed for live-line electricity distribution and its applicability to domestic environment. In doing so, available robotic systems developed for the live-line work are thoroughly investigated and compared in terms of from robotic functionality to economic feasibility. To assess the technology readiness for domestic live-line robot, the rubber gloves based direct live-line engineering methods have been also analyzed and mapped into robotic technology requisites. The results are expected as a fundamental data to help with solving the safety and economics issues when considering development and introduction of compact live-line robot for complex domestic electricity distribution environment.

A Study of the Optimal Condenser Operation in Distribution System (배전선로의 적정 콘덴서 운용 연구)

  • Jeon, Young-Soo;Jang, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1238-1240
    • /
    • 1998
  • For economic operating of distribution system, utility has to minimize the loss in distribution line by controlling reactive power and power factor. This paper presents calculation of reactive power in distribution line, estimation of the condenser capacity according to distance, and computation of optimal location and proper condenser capacity.

  • PDF

Study about Power Transformer Identification Method based on Power Line Communication Technology (전력선 통신 기법을 활용한 변압기 식별 방법에 대한 고찰)

  • Byun, Hee-Jung;Choi, Sang-jun;Shon, Sugoog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1006-1009
    • /
    • 2015
  • Power-line communication technology is proposed to identify power transformers to serve customers in 3 phase -4 wires power distribution systems. Mathematical models for 3-phase power transformers, 3-phase wire lines, and customer loads are described to investigate the transmission characteristics of high frequency power line carrier. From the analysis, distribution line cable circuits have only a limited ability to carry higher frequencies. Typically power transformers in the distribution system prevent propagating the higher frequency carrier signal. The proposed method uses the limited propagation ability to identify the power transformer to serve customers. A novel power transformer identification system is designed and implemented. The system consists of a transmitter and a receiver with power-line communication module. Some experiments are conducted to verify the theoretical concepts in a big commercial building. Also some simulations are done to help and understand the concepts by using MATLAB Simulink simulator.

  • PDF

A new line to line fault location algorithm in distribution power networks using 3 phase direct analysis (3상회로의 직접해석에 의한 배전계통 선간단락 사고 고장거리 계산 알고리즘)

  • Jin, B.G.;Choi, M.S.;Lee, S.J.;Yoon, N.S.;Jung, B.T.;Lee, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.108-110
    • /
    • 2002
  • In this paper, a fault location algorithm is suggested for line to line faults in distribution networks. Conventional fault location algorithms use the symmetrical component transformation, a very useful tool for transmission network analysis. However, its application is restricted to balanced network only. Distribution networks are, in general, operated in unbalanced manners, therefore, conventional methods cannot be applied directly, which is the reason why there are few research results on fault location in distribution networks. Especially, the line to line fault is considered as a more difficult subject. The proposed algorithm uses direct 3-phase circuit analysis, which means it can be applied not only to balanced networks but also to unbalanced networks like distribution a network. The comparisons of simulation results between one of conventional methods and the suggested method are presented to show its effectiveness and accuracy.

  • PDF

Feeder Loop Line Control for the Voltage Stabilization of Distribution Network with Distributed Generators

  • Jeong, Bong-Sang;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • When renewable sources are connected to the distribution network in the form of a distributed generators(DGs), the effect of intermittent output appears as voltage fluctuation. The surplus power at the consumer ends results in the reverse power flow to the distribution network. This reverse power flow causes several problems to the distribution network such as overvoltage. Application of the reactive power control equipment and power flow control by means of BTB inverter have been suggested as the general solutions to overcome the overvoltage, but they are not economically feasible since they require high cost devices. Herein, we suggest the feeder loop line switch control method to solve the problem.

A Protective Scheme for Wind Farm Interconnected to Distribution System (풍력발전단지가 연계된 배전계통에서의 보호방안)

  • Kim, Kyoung-Ho;Lee, Jong-Beom;Seo, Je-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.478-480
    • /
    • 2002
  • Wind energy can be conversed into electrical power using wind generator. Wind farm is made up of many wind generators, and it is often interconnected into distribution system to supply power for utilities. There are many protection problems on distribution system connected with Wind farm. It can effect on power quality severely when faults are occurred on distribution line or Wind farms. Therefore the correct protective scheme must be set for distribution system which has a Wind farm. In this paper, A wind farm connected into distribution line is simulated with several fault types which can be occurred on distribution line and Wind farm using PSCAD/EMTDC. And this paper proposes necessary relays to protect both sides of distribution system and wind farm.

  • PDF

Voltage Measurement Accuracy Assessment System for Distribution Equipment of Smart Distribution Network

  • Cho, Jintae;Kwon, Seong-chul;Kim, Jae-Han;Won, Jong-Nam;Cho, Seong-Soo;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1328-1334
    • /
    • 2015
  • A new system for evaluating the voltage management errors of distribution equipment is presented in this paper. The main concept of the new system is to use real distribution live-line voltage to evaluate and correct the voltage measurement data from distribution equipment. This new approach is suitable for a new Distribution Management System (DMS) which has been developed for a distribution power system due to the connection of distributed generation growth. The data from distribution equipment that is installed at distribution lines must be accurate for the performance of the DMS. The proposed system is expected to provide a solution for voltage measurement accuracy assessment for the reliable and efficient operation of the DMS. An experimental study on actual distribution equipment verifies that this voltage measurement accuracy assessment system can assess and calibrate the voltage measurement data from distribution equipment installed at the distribution line.

Problem and Solution of Wind Farm based on Distribution Power system (계통측에서 본 풍력발전단지 도입에 따른 해결과제 및 대책연구)

  • Yoon, G.G.;Park, S.M.;Hyu, E.;Jung, S.B.;Kim, H.P.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.488-490
    • /
    • 2001
  • A dispered power system means a little bit of small power generation equipment located near the power-damend areas. Due to no power supply line, such a power source is very favorable for the decrease in loss of electric power supply, in comparison to the giantly focused power source, Because of small power source, this power source also corresponds promptly to the variation of power demend. On the basis of energy saving, environmental reservation, and utilization of natural or unused energy, solar power plants can be introduced into the residence section of cities and small water or wind-power plants near the urban areas. In case of Korea, some wind farm have been introduced into Cheju island, Condensed introduction of several small power sources into an used distribution line may, however, result in a big problem, it is, therefore, necessary that protective-cooporative plans between power quality and distribution line should be introduced for efficient utilization of KEPCO distribution system.

  • PDF