• Title/Summary/Keyword: power distribution line

Search Result 812, Processing Time 0.024 seconds

Prediction of Electric Power on Distribution Line Using Machine Learning and Actual Data Considering Distribution Plan (배전계획을 고려한 실데이터 및 기계학습 기반의 배전선로 부하예측 기법에 대한 연구)

  • Kim, Junhyuk;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.171-177
    • /
    • 2021
  • In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.

An Investigation on the Fault Currents in 22.9 kV Distribution System Due to the Increased Capacity and Operating Conditions of Power Transformers in 154 kV Substation (154 kV 변전소 주변압기의 용량 및 운전조건이 22.9 kV 배전계통의 고장전류에 미치는 영향)

  • Cho, Seong-Soo;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.302-310
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity and operating conditions of power transformers in 154 kV substation, the fault currents in distribution system were calculated by the conventional method and simulations of PSCAD/EMTDC program. Consequently, under the condition of the parallel operation of transformers, the fault currents exceed the nominal current of the breakers in some areas. Without NGR at the secondary neutral of the transformer, the current of single line-to-ground fault was bigger than that of 3-phase fault. Therefore, the results clearly show that the measures to limit the fault currents in distribution system are needed when the increased capacity of power transformers is introduced into 154 kV substation.

Analysis of the fluid-solid-thermal coupling of a pressurizer surge line under ocean conditions

  • Yu, Hang;Zhao, Xinwen;Fu, Shengwei;Zhu, Kang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3732-3744
    • /
    • 2022
  • To investigate the effects of ocean conditions on the thermal stress and deformation caused by thermal stratification of a pressurizer surge line in a floating nuclear power plant (FNPP), the finite element simulation platform ANSYS Workbench is utilized to conduct the fluid-solid-thermal coupling transient analysis of the surge line under normal "wave-out" condition (no motion) and under ocean conditions (rolling and pitching), generating the transient response characteristics of temperature distribution, thermal stress and thermal deformation inside the surge line. By comparing the calculated results for the three motion conditions, it is found that ocean conditions can significantly improve the thermal stratification phenomenon within the surge line, but may also result in periodic oscillations in the temperature, thermal stress, and thermal deformation of the surge line. Parts of the surge line that are more susceptible to thermal fatigue damage or failure are determined. According to calculation results, the improvements are recommended for pipeline structure to reduce the effects of thermal oscillation caused by ocean conditions. The analysis method used in this study is beneficial for designing and optimizing the pipeline structure of a floating nuclear power plant, as well as for increasing its safety.

Calculation of an Induced Voltage on Telecommunication Lines in Parallel Distribution Lines (병행 배전선로에서의 통신선 유도전압 계산)

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Seong-Heon;Kim, Seong-Arm;Weon, Bong-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1688-1695
    • /
    • 2008
  • Recently, it is common in a distribution system of Korea Electric Power Corporation (KEPCO) to find instances where distribution lines are parallel. A traditional method of an induced voltage calculation is not suitable for parallel distribution lines. For more actual analysis of induced voltage on telecommunication lines in parallel distribution lines, a new calculation method is needed. This paper presents a new calculation method of an induced voltage on telecommunication line using equivalent ${\pi}$ circuits matrix in parallel distribution lines. The advantages of the calculation method are using actual neutral current value and not using screening factor for considering the overhead ground wire and the neutral wire. To verify the effectiveness and the accuracy of the method, various case studies are performed with EMTP(Electro-Magnetic Transients Program).

A Development of Energency Power Automatic Transfer Module in home (가정용 비상 전원 절체 모듈 개발)

  • Joo, Nam-Kyu;Kim, Kwan-Yuong;Kim, Nam-Ho;Lee, Jong-Myong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.321-323
    • /
    • 2009
  • When power failure occurs at multi-housing complex, auxiliary generator or emergency generator starts to provide power to households. This power is connected to emergency power ELB(Earth Leakage Breaker) at home distribution panel board and supplies power only for emergency light in living room but for heating system, refrigerator and other inevitable apparatuses that are in need of uninterruptible power. Since those domestic appliance are fed from common power line, they are inoperable during power failure. Our research is to resolve this problem by developing compatible relay-drive common/emergency-power ATS (automatic transfer switch) for home distribution panel board. In case of power failure, it transfers automatically and commences to provide power from emergency generator. Through this, Consumers can reach satisfaction where common power loads operate without any problem under both ordinary and power failure condition.

  • PDF

The circuit design to be power transmission or power distribution using the dual characteristic impedance transmission line (이중 특성 임피던스 전송 선로를 이용한 전력 전송 또는 전력 분배가 가능한 회로 설계)

  • Park, Unghee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2339-2344
    • /
    • 2014
  • of a microstrip transmission line, this transmission line can operate as the microstrip line or the coplanar line according to open or short connection between the ungrounded copper plane and grounded plane on the base plane. Two different type operation of the transmission line means that one transmission line can have two different characteristic impedances. This paper proposes and fabricates the circuit to be operated 2-ports power transmission line or 2-way power divider with the stable input matching characteristic by using this dual-impedance transmission line. The proposed circuit operates 2-ports power transmission line in case of the coplanar line or 2-way power divider line in case of the microstrip line. The fabricated circuit shows $S_{21}$ > -0.2 dB and $S_{11}$ < -15 dB above 700 MHz when the circuit operates 2-ports power transmission line. And, it is $S_{21}$ > -3.8 dB, $S_{11}$ < -10 dB and $S_{21}/S_{31}$ < ${\pm}0.3dB$ above 700 MHz when the circuit operates 2-way power divider.

On-Line Social Network Generation Model (온라인 소셜 네트워크 생성 모델)

  • Lee, Kang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.914-924
    • /
    • 2020
  • In this study we developed artificial network generation model, which can generate on-line social network. The suggested model can represent not only scale-free and small-world properties, but also can produce networks with various values of topological characteristics through controlling two input parameters. For this purpose, two parameter K and P are introduced, K for controlling the strength of preferential attachment and P for controlling clustering coefficient. It is found out on-line social network can be generated with the combinations of K(0~10) and P(0.3~0.5) or K=0 and P=0.9. Under these combinations of P and K small-world and scale-free properties are well represented. Node degree distribution follows power-law. Clustering coefficients are between 0.130 and 0.238, and average shortest path distance between 5.641 and 5.985. It is also found that on-line social network properties are maintained as network node size increases from 5,000 to 10,000.

Development of overhead distribution line diagnosis system program (가공 배전선로 진단시스템 프로그램 개발)

  • Dong Hyun Chung;Deok Jin Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.81-87
    • /
    • 2023
  • In this paper, accidents in high-voltage overhead distribution lines, which provide stable power supply in the power system, cause inconvenience in life and disruption of production of companies. 22.9 [kV] high-voltage overhead power distribution lines aim to improve reliability and stability, such as damage caused by rain, snow, wind, etc., or electric shock prevention. Therefore, in order to prevent wire disconnection accidents due to deterioration of electrical conductivity or tensile strength due to corrosion of overhead distribution lines, it is necessary to prevent unexpected accidents in the future through regular inspection and repair. In order to diagnose deterioration due to corrosion of distribution lines, a diagnostic system (measuring instrument) is installed on the wires to monitor the condition of the wires. The manager on the ground receives the measured data through ZigBee wireless communication, controls the diagnosis system through the diagnosis system program, and grasps the condition of the overhead distribution line through the measured data and photographed photos, and predicts the life of the wire along with the visual inspection method. developed a program.

Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data (검침데이터를 이용한 전력설비 시공간 부하분석모델)

  • Shin, Jin-Ho;Kim, Young-Il;Yi, Bong-Jae;Yang, Il-Kwon;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).