• Title/Summary/Keyword: power consumption analysis

Search Result 1,192, Processing Time 0.032 seconds

Comparative Study of Mass Transfer and Bubble Hydrodynamic Parameters in Bubble Column Reactor: Physical Configurations and Operating Conditions

  • Sastaravet, Prajak;Chuenchaem, Chomthisa;Thaphet, Nawaporn;Chawaloesphonsiya, Nattawin;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, effects of physical configurations and operating conditions on bubble column performance were analyzed in terms of bubble hydrodynamic and mass transfer parameters. Bubble column with 3 different dimensions and 7 gas diffusers (single / multiple orifice and rigid / flexible orifice) were applied. High speed camera and image analysis program were used for analyzing the bubble hydrodynamic parameters. The local liquid-side mass transfer coefficient ($k_L$) was estimated from the volumetric mass transfer coefficient ($k_La$) and the interfacial area (a), which was deduced from the bubble diameter ($D_B$) and the terminal bubble rising velocity ($U_B$). The result showed that the values of kLa and a increased with the superficial gas velocity (Vg) and the size of bubble column. Influences of gas diffuser physical property (orifice size, thickness and orifice number) can be proven on the generated bubble size and the mass transfer performance in bubble column. Concerning the variation of $k_L$ coefficients with bubble size, 3 zones (Zone A, B and C) can be observed. For Zone A and Zone C, a good agreement between the experimental and the predicted $K_L$ coefficients was obtained (average difference of ${\pm}15%$), whereas the inaccuracy result (of ${\pm}40%$) was found in Zone B. To enhance the high $k_La$ coefficient and absorption efficiency in bubble column, it was unnecessary to generate numerous fine bubbles at high superficial gas velocity since it causes high power consumption with the great decrease of $k_L$ coefficients.

Analysis on Fault Current limiting and Recovery Characteristics of Flux-Lock Type Superconducting Fault Current Limiter According to Increase of Applied Voltage (전압증가에 따른 자속구속형 초전도 한류기의 전류제한 및 회복특성 분석)

  • Oh, Kum-Gon;Han, Tae-Hee;Cho, Yong-Sun;Cho, Hyo-Sang;Choi, Myoung-Ho;Han, Young-Hee;Sung, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.107-112
    • /
    • 2007
  • The flux-lock type SFCL consists of transformer with primary and secondary windings connected to a superconducting element in serial. It can be divided into the subtractive and the additive polarity windings according to the winding direction. It could change the fault current limiting characteristics according to the inductance ratio between the coil 1 and coil 2. We investigated the voltage-current characteristics of the flux-lock type SFCL according to the increment of applied voltage. When the applied voltage of the SFCL with the subtractive and the additive polarity windings was increased a initial limiting current ($I_{ini}$) and the quench time of the superconducting element were increased. The recovery time of the superconducting element was increased by increment of applied voltage. Therefore, it was confirmed that recovery characteristics in the flux-lock type SFCL were largely dependent on the consumed energy of a superconducting element because of increment of the consumption power into the superconducting element.

The Signal-to-Noise Ratio Enhancement of the Satellite Electro-Optical Imager using Noise Analysis Methods (영상센서신호의 잡음분석을 이용한 위성용 전자광학탑재체의 신호대잡음비 개선 방법)

  • Park, Jong-Euk;Lee, Kijun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2017
  • The Satellite Electro-Optic Payload System needsspecial requirements with the conditions of limited power consumption and the space environment of solar radiation. The acquired image quality should be mainly depend on the GSD (Ground Sampled Distance), SNR (Signal to Noise Ratio), and MTF (Modulation Transfer Function). On the well-manufactured sensor level, the thermal noise is removed on ASP (Analog Signal Processing) using the CDS (Corrective Double Sampling); the noise signal from the image sensor can be reduced from the offset signals based on the pre-pixels and the dark-pixels. The non-uniformity shall be corrected with gain, offset, and correction parameter of the image sensor pixel characteristic on the sensor control system. This paper describes the SNR enhancement method of the satellite EOS payload using the mentioned noise remove processes on the system design and operation, which is verified by tests and simulations.

Energy Analysis in CO2 Membrane Separation Process via Heat Integration (열통합 기법을 통한 이산화탄소 막 분리공정 에너지 해석)

  • Kim, Seong Hun;Kim, Tae Yong;Kim, Beom Seok;Cho, Hyun-Jun;Yeo, Yeong Koo
    • Plant Journal
    • /
    • v.12 no.2
    • /
    • pp.24-30
    • /
    • 2016
  • The membrane separation processes have received attention due to advantages such as compactness, modularity, ease of installation, flexibility of operation, lower capital cost and lower energy consumption. In this study, we evaluated accuracy of cross-flow, co-current and counter-current models. With the most accurate model, we identified the operating conditions of the two-stage membrane separation and examined the effects of permeance and selectivity of the membrane by simulation. Futhermore, power requirements and operating cost savings due to the introduction of the heat exchanger were investigated by applying heat exchanger network synthesis technique in the two-stage membrane separation using vapor sweep.

  • PDF

Force Control of Main Landing Gear using Hybrid Magneto-Rheological Damper (하이브리드 MR댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Park, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.315-320
    • /
    • 2010
  • To improve not only the basic performance but also the fail-safe performance, power consumption of the main landing gear for helicopters, a semi-active control landing gear using hybrid MR damper, was introduced in this paper. This damper of the configuration to install a permanent magnet in a electromagnet MR damper, was designed by the trade-off study on permanent magnet location and a magnet field analysis. Force control algorithm which keep the sum of air spring force and damping force at a specified value during landing, was used for the controller. The drop simulations using ADAMS Model for this semi-active control landing gear, were done. The improvement of the preceding performances as the result to evaluate the landing performance by the simulations, has been confirmed.

Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles (하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구)

  • Kwon, Hwabhin;Park, Heesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.403-408
    • /
    • 2016
  • Lithium-ion batteries are commonly employed in hybrid electric vehicles (HEVs), and achieving high energy density in the battery has been one of the most critical issues in the automotive industry. Because liquid cooling containing antifreeze is important in automotive batteries to enable cold starts, an effective geometric configuration for high-cooling performance should be carefully investigated. Battery cooling with antifreeze has also been considered to realize successful cold starts. In this article, we theoretically investigate a specific property of an antifreeze cooling battery system, and we perform numerical modeling to satisfy the required thermal specifications. Because a typical battery system in HEVs consists of multiple stacked battery cells, the cooling performance is determined mainly by the special properties of antifreeze in the coolant passage, which dissipates heat generated from the battery cells. We propose that the required cooling performance can be realized by performing numerical simulations of different geometric configurations for battery cooling. Furthermore, we perform a theoretical analysis as a design guideline to optimize the cooling performance with minimum power consumption by the cooling pump.

Performance analysis of Hierarchical Mobile IPv6 depending on the paging size (페이징 영역크기에 따른 계층적 이동 IPv6 의 성능분석)

  • 정계갑;이상욱;김준년
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.964-974
    • /
    • 2003
  • With increasing use of a personal mobile computer. the Mobile IPv6 is one of the main protocols that support mobility and complies with IPv6 specification. Similar to the mobile IPv6, the mobile IPv6 also has limitations on fast moving condition. The Hierarchical Mobile IPv6 is a solution that overcomes these limitations. The Hierarchical Mobile IPv6 is a micro mobility protocol that supports fast mobile IP handover and reduces signaling overhead with Mobility Anchor Point(MAP). But until now no paging method is applied to the Hierarchical Mobile IPv6 to reduce unnecessary signaling overhead and power consumption of mobile nodes. So, the paging mechanism for the Hierarchical Mobile IPv6 is proposed in this paper. the mechanism is implemented by making use of the destination option header and extension function and the last location algorithm. The results show that the Hierarchical Mobile IPv6 with the paging ability reduces the traffic of mobile networks by removing unnecessary binding update packet generated whenever handover takes place. Also, the larger the paging size is. the less the number of BU(Binding Update) massage generated.

Design and Analysis of a NMOS Gate Cross-connected Current-mirror Type Bridge Rectifier for UHF RFID Applications (UHF RFID 응용을 위한 NMOS 게이트 교차연결 전류미러형 브리지 정류기의 설계 및 해석)

  • Park, Kwang-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.10-15
    • /
    • 2008
  • In this paper, a new NMOS gate cross-connected current-mirror type bridge rectifier for UHF RFID applications is presented. The DC converting characteristics of the proposed rectifier are analyzed with the high frequency equivalent circuit and the gate capacitance reduction technique for reducing the gate leakage current due to the increasing of operating frequency is also proposed theoretically by circuitry method. As the results, the proposed rectifier shows nearly same DC output voltages as the existing NMOS gate cross-connected rectifier, but it shows the gate leakage current reduced to less than 1/4 and the power consumption reduced more than 30% at the load resistor, and it shows more stable DC supply voltages for the valiance of load resistance. In addition, the proposed rectifier shows high enough and well-rectified DC voltages for the frequency range of 13.56MHz HF(for ISO 18000-3), 915MHz UHF(for ISO 18000-6), and 2.45 GHz microwave(for ISO 18000-4). Therefore, the proposed rectifier can be used as a general purpose one to drive RFID transponder chips on various RFID systems which use specified frequencies.

Evaluating Carbon Dioxide Emission from Cadastral Category based on Tier 3 Approach (Tier 3 방식에 의거한 지목별 온실가스 배출 실태평가)

  • Kim, Dae-Ho;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.11-22
    • /
    • 2011
  • It is usual for the carbon dioxide emission to be calculated by official energy consumption statistics produced from a number of specialized industrial process such as refinery, power plant etc. The aim of this research was to evaluate potential of cadastral system in monitoring carbon dioxide emitted from land use. An empirical study for a cadastral category was conducted to demonstrate how a on-site measurement can be used to assist in estimating the carbon dioxide emission in terms of land use specific settings. The cadastral category based analysis made it possible to identify area-wide patterns of carbon dioxide emission, which cannot be acquired by traditional Government statistics. It was possible to identify successively increasing trends in the human-related parcels such as housing land while decreasing trends of carbon dioxide in sink parcels(eg. forest). The results indicate that the cadastral parcel could be used not only as a tool to monitor carbon dioxide emission, but also as an evidence to restrict initiation of development activities causing negative influence to carbon dioxide emission such as road construction. As a result, the research findings have established the new concept of "carbon dioxide emission monitoring based on cadastral category", proposed as an initial aim of this paper.

Performance Analysis of Cooperative Diversity on the Usage of Opportunistic Relay (기회주의적인 중계기 사용에 대한 협력 다이버시티의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.7-12
    • /
    • 2014
  • The data forwarding transmission is an important function of the relay in cooperative communication in wireless communication systems. However, additional relay cause the waste of power consumption and cost. Therefore, in this paper, we consider how to use the user mobile devices in stead of relays to deal with this problem. In this paper, we proposed the protocol that divide each relay into two states of idle and non-idle. The receiver has two functions of base station and user mobile device. In this case, it is possible that no additional cost, and improve the spectral efficiency and network capacity. We verified BER performance for the proposed protocol over Rayleigh fading through Monte-Carlo simulation.