• Title/Summary/Keyword: power conditioning

Search Result 1,094, Processing Time 0.021 seconds

Experimental Study on the Cooling and Heating Characteristics of System A/C Applying the Digital Scroll Compressor (디지털 스크롤 압축기를 적용한 시스템 에어컨의 냉난방특성에 대한 실험적 연구)

  • Jeon, Yong-Ho;Kim, Dae-Hoon;Kwon, Young-Chul;Jang, Geun-Sun;Lee, Yoon-Soo;Moon, Je-Nyung;Yoon, Baek;Hong, Ju-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.454-460
    • /
    • 2003
  • In order to investigate the cooling and heating characteristics of a variable-capacity system A/C applying a digital scroll compressor, the cooling and heating capacities and COP are measured by the psychrometric calorimeter. The capacity of the system is controlled by the digital scroll compressor, which is operated by controling PWM valve and the loading vs. unloading time. In the case of unloading compared that of loading, the consumption power of the compressor is about 11% and the capacity variation of the system A/C is within about 1%. When the system A/C is operated under the cooling and heating standard conditions, COP is nearly uniform but cooling capacity and heating capacity increase at minimum, rated and maximum modes. The system A/C applying the digital scroll compressor is effective for the range with high load or the width of large load variation. When the auxiliary heater is on, at the cold region, the system A/C produces the excellent heating capacity.

Heating and Cooling Performance Analysis of Ground Source Heat Pump System in Low Energy House (저에너지주택의 지열히트펌프시스템 냉·난방 성능분석)

  • Baek, Namchoon;Kim, Sungbum;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.387-393
    • /
    • 2016
  • A ground source heat pump system maintains a constant efficiency due to its stable heat source and radiant heat temperature which provide a more effective thermal performance than that of the air source heat pump system. As an eco-friendly renewable energy source, it can reduce electric power and carbon dioxide. In this study, we analyzed one year of data from a web based remote monitoring system to estimate the thermal performance of GSHP with the capacity of 3RT, which is installed in a low energy house located in Daejeon, Korea. This GSHP system is a hybrid system connected to a solar hot water system. Cold and hot water stored in a buffer tank is supplied to six ceiling cassette type fan coil units and a floor panel heating system installed in each room. The results are as follows. First, the GSHP system was operated for ten minutes intermittently in summer in order to decrease the heat load caused by super-insulation. Second, the energy consumption in winter where the system was operated throughout the entire day was 7.5 times higher than that in summer. Moreover, the annual COP of the heating and cooling system was 4.1 in summer and 4.2 in winter, showing little difference. Third, the outlet temperature of the ground heat exchanger in winter decreased from $13^{\circ}C$ in November to $9^{\circ}C$ in February, while that in summer increased from $14^{\circ}C$ to $17^{\circ}C$ showing that the temperature change in winter is greater than that in summer.

Study on Heat Transfer and Pressure Drop Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Cooling Condition ($CO_2$ 열펌프용 내부 열교환기의 냉방조건에서 열전달 및 압력 강하 특성에 대한 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.517-525
    • /
    • 2008
  • In order to study the heat transfer and pressure drop of an internal heat exchanger for $CO_2$ heat pump under cooling condition, the experiment and numerical analysis were performed. Four kinds of internal heat exchangers with a coaxial tube type and a micro-channel tube type were used. The experimental apparatus consisted of a test section, a power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of the internal heat exchanger refrigerant flow rate, the length of the internal heat exchanger, the operating condition of the gas-cooler, the evaporator and the type of the internal heat exchangers were investigated. With increasing of the flow rate, the heat transfer rate increased about 25%. The heat transfer rate of the micro-channel tube type was higher about 100% than that of the coaxial tube type. With increasing of the length of the internal heat exchanger, the heat transfer rate increased about $20{\sim}50%$. The pressure drop of the low-side tube was larger compared with that of the high-side tube.

An Experimental Study of Coolant Operating Conditions in a Polymer Electrolyte Membrane Fuel Cell (고분자연료전지의 냉각수 운전 조건에 관한 실험적 연구)

  • Cheong, Seong-Ir;Kim, Tae-Wan;Lee, Chang-Gun;Kim, Doo-Hyun;Ahn, Young-Chull;Lee, Jae-Keun;Hwang, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.541-546
    • /
    • 2008
  • A coolant operating condition in al fuel cell stack was an important factor to determine the temperature distribution which affected the fuel cell performance and relative humidity. In this study, the fuel cell performance was evaluated as a function of the coolant flow rate with the range of $0.1{\sim}0.8$ liter/min cell and the coolant inlet temperature of $20{\sim}82^{\circ}C$. The cell temperature increased with increasing the coolant inlet temperature and with decreasing the coolant flow rate. The coolant inlet temperature and flow rate to maintain the better performance of the fuel cell were in the range of $45{\sim}60^{\circ}C$ and $0.2{\sim}0.4$ liter/min cell, respectively. The experimental results showed that the optimal heat removal rate from the stack by coolant was $0.4{\sim}0.6W/cm^2$ cell.

Experimental Study on the Two Phase Thermosyphone Loop with Parallel Connected Multiple Evaporators under Partial Load and Low Temperature Operating Condition (병렬 연결된 다중 증발기 구조 2상 유동 순환형 열사이폰의 부분부하 및 저온운전 특성에 관한 실험적 연구)

  • Kang In-Seak;Choi Dong-Kyu;Kim Taig-young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1051-1059
    • /
    • 2004
  • Two phase thermosyphone loop for electronics cooling are designed and manufactured to test its performance under the partial load and low environment temperature conditions. The thermosyphone device has six evaporators connected parallel for the purpose of cooling six power amplifier units (PAU) independently. The heater modules for simulating PAUs are adhered with thermal pad to the evaporator plates to reduce the contact resistance. There are unbalanced distributions of liquid refrigerant in the differently heated evaporators due to the vapor pressure difference. To reduce the vapor pressure differences caused by partial heating, two evaporators are connected each other using the copper tube. The pressure regulation tube successfully reduces these unbalances and it is good candidates for a field distributed systems. Under the low environment temperature operating condition, such as $-30^{\circ}C$, there may be unexpected subcooling in condenser. It leads the very low saturation pressure, and under this condition there exists explosive boiling in evaporator. The abrupt pressure rise due to the explosive boiling inhibits the supplement of liquid refrigerant to the evaporator for continuous cooling. Finally the cooling cycle will be broken. For the normal circulation of refrigerant there may be an optimum cooling air flow rate in condenser to adjust the given heat load.

A Study on the Drag and Heat Transfer Reduction Phenomena and Degradation Effects of the Viscoelastic Fluids (점탄성유체의 저항 및 열전달 감소현상과 퇴화의 영향에 관한 연구)

  • Eum, C.S.;Jeon, C.Y.;Yoo, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1990
  • The drag and heat transfer reduction phenomena and degradation effects of drag reducing polymer solutions which are known as the viscoelastic fluids are investigated experimentally for the turbulent circular tube flows. Two stainless steel tubes are used for the experimental flow loops. Aqueous solutions of Polyacrylamide Separan AP-273 with concentrations from 300 to 1000 wppm are used as working fluids. Flow loops are set up to measure the friction factors and heat transfer coefficients of test tubes in the once-through system and the recirculating flow system. Test tubes are heated by power supply directly to apply constant heat flux boundary conditions on the wall. Capillary tube viscometer and falling ball viscometer are used to measure the viscous characteristics of fluids and the characteristic relaxation time of a fluid is determined by the Powell-Eyring model. The order of magnidude of the thermal entrance length of a drag reducing polymer solution is close to the order of magnitude of the laminar entrance length of Newtonian fluids. Dimensionless heat transfer coefficients of the viscoelastic non-Newtonian fluids may be represented as a function of flow behavior index n and newly defined viscoelastic Graetz number. As degradation continues viscosity and the characteristic relaxation time of the testing fluids decrease and heat transfer coefficients increase. The characteristic relaxation time is used to define the Weissenberg number and variations of friction factors and heat transfer coefficients due to degradation are presented in terms of the Weissenberg number.

  • PDF

Study on $CO_2$ Evaporation Heat Transfer and Pressure Drop in a Horizontal Smooth Tube (수평 평활관내 $CO_2$ 증발열전달 및 압력강하에 관한 연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.615-621
    • /
    • 2007
  • Experimental study on the heat transfer characteristics of $CO_2$ in a horizontal smooth tube was carried out to investigate the heat transfer coefficient and pressure drop during evaporation of $CO_2$. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes ($200{\sim}1200kg/m^2s$), heat flukes ($10{\sim}100kW/m^2$) and saturation temperatures (-5, 0, $5^{\circ}C$). With increasing the heat flux, the evaporation heat transfer coefficient increased. But the variation of the heat transfer coefficient on the increase of the mass flux was not large. And the significantly drops of the heat transfer coefficient was observed at any heat flux and mass flux because of the change of the flow pattern in the tube. With increasing the saturation temperature, the heat transfer coefficient increased due to the promotion of a nucleate boiling. The measured pressure drop during evaporation increased with increasing the mass flux and decreasing the saturation temperature.

Experimental Study on Characteristics of Evaporation Heat Transfer and Oil Effect of $CO_2$ in Mini-channels (미세채널 내 이산화탄소의 증발 열전달 특성 및 오일의 영향에 관한 실험적 연구)

  • Lee, Sang-Jae;Kim, Dae-Hoon;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • In order to investigate $CO_2$ heat transfer coefficient and pressure drop by PAG oil concentration during $CO_2$ evaporation, the experiment on evaporation heat transfer characteristics in a mini-channels were performed. The experimental apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes($300{\sim}800kg/m^{2}s$), heat fluxes($10{\sim}40kW/m^2$) saturation temperatures($-5{\sim}5^{\circ}C$), and PAG oil concentration(0, 3, 5wt%). The variation of the heat transfer coefficient was different according to the oil concentration. With the increase of the oil concentration, the evaporation heat transfer coefficient decreased and the delay of dryout by oil addition was found. Pressure drop increased with the increase of the oil concentration and heat flux, and the decrease of saturation temperature.

Applicability of the Solar Irradiation Model in Preparation of Typical Weather Data Considering Domestic Climate Conditions (표준기상데이터 작성을 위한 국내 기후특성을 고려한 일사량 예측 모델 적합성 평가)

  • Shim, Ji-Soo;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.467-476
    • /
    • 2016
  • As the energy saving issues become one of the important global agenda, the building simulation method is generally used to predict the inside energy usage to establish the power-saving strategies. To foretell an accurate energy usage of a building, proper and typical weather data are needed. For this reason, typical weather data are fundamental in building energy simulations and among the meteorological factors, the solar irradiation is the most important element. Therefore, preparing solar irradiation is a basic factor. However, there are few places where the horizontal solar radiation in domestic weather stations can be measured, so the prediction of the solar radiation is needed to arrive at typical weather data. In this paper, four solar radiation prediction models were analyzed in terms of their applicability for domestic weather conditions. A total of 12 regions were analyzed to compare the differences of solar irradiation between measurements and the prediction results. The applicability of the solar irradiation prediction model for a certain region was determined by the comparisons. The results were that the Zhang and Huang model showed the highest accuracy (Rad 0.87~0.80) in most of the analyzed regions. The Kasten model which utilizes a simple regression equation exhibited the second-highest accuracy. The Angstrom-Prescott model is easily used, also by employing a plain regression equation Lastly, the Winslow model which is known for predicting global horizontal solar irradiation at any climate regions uses a daily integration equation and showed a low accuracy regarding the domestic climate conditions in Korea.

A Study on the Development of Power-Line EMI Filter for the Prevention of Conduction Noise by Coil Loads. (코일성 부하에 의한 전도 노이즈 방지 목적의 전원용 EMI필터 개발 연구)

  • Kim, Byeong Jun;Joo, Jae-hun;Kim, Jin Ae;Baek, Pan Keun;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.175-179
    • /
    • 2009
  • this paper proposes a filter design that makes to be satisfied EMC spec. in reliability test of analogue switch for electronic equipment and air conditioning load unit. A designed electromagnetic wave filter was applied to minimize an mutual interference and surrounding environment and improve the product's quality being satisfied to EMC standard. By simulation, using a spectrum analyzer at the 30MHz~1GHz band, ISO/JASO standard frequency range, and simplified EMI chamber, energy distribution of a specific frequency band was analyzed and the capacity of the element which composed the filter was determined in order to implement the most suitable electromagnetic wave filter.In fact, it was certificated that noise decrease by filter addition to the analogue switch for electronic equipment and air conditioning load unit in Certification Authority, and confirmed that the unit is carried out a normal action without electromagnetic wave interference.

  • PDF