• Title/Summary/Keyword: power conditioning

Search Result 1,094, Processing Time 0.03 seconds

Numerical Study on Slanted Cubical-Cavity Natural Convection (경사진 3차원 캐비티내 자연대류현상에 관한 수치적 연구)

  • Myong, Hyon-Kook;Kim, Jong-Eun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.722-728
    • /
    • 2006
  • Natural convection flows in a cubical air-filled slanted cavity that has one pair of opposing faces isothermal at different temperatures, $T_h\;and\;T_c$, respectively, the remaining four faces having a linear variation from $T_c\;toT_h$ are numerically simulated by a solution code (PowerCFD) using unstructured cell-centered method. Special attention is paid to three-dimensional flow and thermal characteristics according to a new orientation (diamond type) for the cubical-cavity benchmark problem in natural convection. Comparisons of the average Nusselt number at the cold face are made with experimental benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the laminar convection in a cubical air-filled slanted cavity with differentially heated walls.

PWAM Based THD Reduction of Inverter for Air-Conditioning Blower (PWAM 방식을 이용한 공조시스템용 인버터의 THD 저감 방법)

  • Lim, Seung-Beom;Lee, Yun-Ha;Zun, Chan-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.97-98
    • /
    • 2011
  • The HVAC(Heating Ventilation and Air conditioning) system is controlled by two ways, one is ON/OFF control and the other is PWM inverter with V/F. Control of blower with the use of PWM inverter has quite some benefits such as the capability of changing speed, high efficiency and reduced noise level compared with ON/OFF control. But if blower is operated at low speed, high THD generated by decrease of ma, and output voltage lowered in proportion to frequency. To solve these problems, filter should be installed at the output stage of inverter, which can decrease THD but has problems such as increase of volume size and additional braking resistance. This paper proposes the PWAM method which can reduce THD instead of installing the filter at the output stage of inverter. The proposed PWAM method is an inverter modulation method that fixes the modulation index of inverter to reduce THD by varying DC link voltage of inverter unlike conventional PWM method. Finally, the validity of proposed PWAM methods verified by experiments.

  • PDF

Design and Analysis of Surface-Mounted PM Motor of Compressor for Electric Vehicles Applications according to Slot/Pole Combinations (전기자동차 압축기용 표면부착형 영구자석 전동기의 극/슬롯수 조합에 따른 특성해석 및 설계)

  • Choi, Jang-Young;Park, Hyung-Il;Jang, Seok-Myeong;Lee, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1846-1857
    • /
    • 2011
  • This paper deals with design and analysis of surface-mounted PM (SPM) motor for compressor of air-conditioning system for electric vehicle applications according to slot/pole combination. First, required torque-speed curve characteristics are determined from operating conditions of the compressor. Restricted conditions such as motor size limit and current density are also determined. And then, under same rated and restricted conditions, twelve models which have different slot/pole combinations each other are designed for various pole arc/pitch ratio using simple equations and 2-d finite element (FE) analyses. Designed models are analyzed and compared in terms of back-emf THD, cogging torque, torque ripple, power losses, efficiency, etc. On the basis of analysis results, it is found that the motor with a 6-pole PM rotor and a 27-slot stator has most outstanding performances in electromagnetic aspects. Finally, through the mechanical modal analysis and demagnetization analysis, it is concluded that the determined motor is most suitable for the compressor of air-conditioning system for electric vehicles.

Verification Experiment and Analysis for 6kW Solar Water Heating System(Part 3 : Optimum Design and Economic Evaluation) (6kW급 태양열 온수급탕 시스템의 실증실험 및 분석(제3보 최적설계 및 경제성평가))

  • Choi Bong Su;Lee Bong Jin;Kang Chaedong;Hong Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2005
  • The goal of the present paper is to show the optimum design and operation conditions on 6 kW solar water heating system by using computer simulation with verified modelling. As the object functions, we took not only the amount of acquired and auxiliary heat but LCC, which has a relative importance and decisive role in economy. As expected, the maximum heat is acquired at the slope of collector with the equal degree to the latitude, facing the south. The capacity increase of the circulation pump and the storage tank lead to the increase of acquired heat and the decrease of auxiliary heat, but do not necessarily give economical advantages owing to additional electrical power consumption. In the present system, the minimum LCC can be obtained at the storage tank volume of 450 L and the mass flow rate of 0.344 kg/s.

The Study on Drag Reduction Rates and Degradation Effects in Synthetic Polymer Solution with Surfactant Additives (계면활성제를 이용한 합성고분자 수용액의 마찰저항감소 및 퇴화 특성 향상 연구)

  • 이동민;김남진;윤석만;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • The turbulent flow resistance of water solution with polymer is reduced as compared with that of pure water. This effects is named th drag reduction and offers the significant reduction of the pumping power and the energy consumption. But the intense shear forces and the high temperature experienced by the polymer solution when passing through the pipes cause the degradation a loss of drag reduction effectiveness. Especially, the degradation behavior is found to be strongly dependent on temperature. This mechanical and thermal degradation can be avoided by adding materials such as surfactant to the polymer solution, which enhance the bonding force between molecules. In the present study, Copolymer and SDS were utilized and they were mixed in 10 different mixture ratios, while total concentration was fixed as 100wppm. Degradation of Copolymer-SDS mixture solutions was investigated experimentally in closed loop at the temperature of $10^{\circ}C\; and\; 80^{\circ}C$ with various flow average velocities of 1.5 m/sec, 3.0m/sec, and 4.5m/sec. Degradation characteristics of polymer solution without surfactant show a radical loss of drag reduction effectiveness at high temperature. Degradation alleviation ability of surfactant is especially effective at high temperature. Consequently, this results show that the addition of surfactant to the polymer solution can control unfavorable degradation phenomena for high temperature systems.

  • PDF

Performance Simulation of Ground-Coupled Heat Pump(GCHP) System for a Detached House (단독주택 적용 지열 히트펌프 시스템의 성능 분석)

  • Sohn, Byong-Hu;Choi, Jong-Min;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.392-399
    • /
    • 2011
  • Ground-coupled heat pump(GCHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some work related to performance evaluation of GCHP systems for commercial buildings has been done, relatively little has been reported on the residential applications. The aim of this study is to evaluate the cooling and heating performances of a vertical GCHP system applied to an artificial detached house($117\;m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, borehole diameter, and ground thermal properties, etc. The cooling and heating performance simulation of the system was conducted with different prediction times of 8760 hours and 240 months. The performance characteristics including seasonal system COP, average annual power consumption, and temperature variations related to ground heat exchanger were calculated and compared.

A Study on Performance of Thermoelectric Air-Cooling System in Parallel Flow (평행유동에서 공랭식 열전모듈 냉각시스템의 성능에 관한 연구)

  • Karng, Sarng-Woo;Shin, Jae-Hoon;Han, Hun-Sik;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.421-429
    • /
    • 2011
  • Experimental and theoretical studies on cooling performance of two-channel thermoelectric air-cooling system in parallel flow are conducted. The effects of operating temperature to physical properties of thermoelectric module (TEM) are experimentally examined and used in the analysis of an air-cooling system considering thermal network and energy balance. The theoretical predicted temperature variation and cooling capacity are in good agreement with measured data, thereby validating analytic model. The heat absorbed rate increases with increasing the voltage input and decreasing thermal resistance of the system. The power consumption of TEM is linearly proportional to mean temperature differences due to variations of the physical properties on operation temperature of TEM. Furthermore thermal resistance of hot side has greater effects on cooling performance than that of cold side.

A Study on Performance Improvement of a Heat Pump Dryer with an Extra Evaporator Outside (보조 외부 증발기를 이용한 히트펌프 건조기 성능 향상에 관한 연구)

  • Lee, Young-Lim;Park, Sang-Jun;Hwang, Il-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.711-717
    • /
    • 2012
  • A heat pump dryer for the frozen food needs to preheat the air to a certain temperature where condensation can efficiently occur. In this study, an analysis of a heat pump dryer performance with operating conditions, an analysis of supplying heat with internal and external evaporators and a warm-up experiment with the evaporators have been performed. The results showed that the external evaporator can significantly accelerate the warm-up time of the dryer, so that it can reduce power consumption greatly. The use of the external evaporator is more efficient for higher ambient temperature. In addition, it was found that COP decreases and the range of evaporating pressure for the evaporator becomes narrower as the condensing temperature of the condenser increases.

Design of Self-Powered Sensor System for Condition Monitoring of Industrial Electric Facilities (산업전기 설비의 상태 감시를 위한 자가 발전 센서 시스템의 설계)

  • Lee, Ki-Chang;Kang, Dong-Sik;Jeon, Jeong-Woo;Hwang, Don-Ha;Lee, Ju-Hun;Hong, Jeong-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.264-266
    • /
    • 2005
  • Recently, on-line diagnosis methods through wired and wireless networks are widely adopted in the diagnosis of industrial Electric Facilities, such as generators, transformers and motors. Also smart sensors which includes sensors, signal conditioning circuits and micro-controller in one board are widely studied in the field of condition monitoring. This paper suggests an self-powered system suitable for condition-monitoring smart sensors, which uses parasitic vibrations of the facilities as energy source. First, vibration-driven noise patterns of the electric facilities are presented. And then, an electromagnetic generator which uses mechanical mass-spring vibration resonance are suggested and designed. Finally energy consumption of the presented smart sensor, which consists of MEMS vibration sensors, signal conditioning circuits, a low-power consumption micro-controller, and a ZIGBEE wireless tranceiver, are presented. The usefulness and limits of the presented electromagnetic generators in the field of electric facility monitoring are also suggested.

  • PDF

The Proposal of a New Drainage System without Incline of Piping and Experiment on Drainage Flow Characteristics (구배가 없는 신배수시스템의 제안 및 배수유동 특성에 관한 실험적 연구)

  • Cha Young-Ho;Yee Jurng-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.452-458
    • /
    • 2005
  • In Korea, pumping pipe using gravity way by water is most popular method in drainage system. But, it is difficult to repair a drainpipe in this method because the drain pipe diameter is increased as using this method. In this research, we propose a new drainage system. The system aim for an adaptedness with buildings, freedom of plan, construction and renewal in water pipe equipments, etc. The new system is not need of incline of piping, and it uses drainage power that is changed potential energy by high velocity flow as making Siphonage at vertical pipe. Therefore, the diameter of piping can decreased than existing piping system established in the ceiling. Also because connecting position will be located at the lower part, it is changed the potential energy of drainage to the high velocity flow. In addition, drainage will be smooth because the fixture drain is linked by each drain pipes.