• Title/Summary/Keyword: power conditioning

Search Result 1,094, Processing Time 0.029 seconds

Power Conditioning System for SMES Using Thyristor PWM Converter (싸이리스터 PWM 컨버터를 이용한 초전도자기에너지저장장치의 전력변환기)

  • Han, Byung-Moon;Beak, Seung-Taek;Lee, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1061-1063
    • /
    • 2001
  • This paper proposes a new power conditioning system for the SMES composed of a thyristor PWM converter with a resonant commutation circuit. The operation of the proposed system and the dynamic interaction between SMES and the power system is analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with EMTP, considering a typical 154kV power system. The proposed system can provide a solution for the power factor regulation and harmonic level reduction in the ac terminal with low-cost system configuration.

  • PDF

The Heat Transfer Performance with Pumping Power for a Particle Bed Heat Exchanger (입자층(粒子層)을 이용한 열교환기(熱交換器)에서 소요동력(所要動力)에 따른 전열특성(傳熱特性)에 관(關)한 연구(硏究))

  • Yoo, J.O.;Yang, H.J.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.351-359
    • /
    • 1992
  • In order to improve the performance of heat exchanger, fluidized bed is often employed. The experiments are carried out in fluidized double pipe parallel flow heat exchanger in which finned tube is vertically immersed. And the heat transfer coefficients between the heated tube and fluidized bed of alumina beads(dp=0.41, 0.54, 0.65, 0.77mm) are calculated as a function of air fluidized velocity and pumping power. The effects of particle size, static bed height and pumping power on the heat transfer coefficients are investigated. And the heat transfer coefficients are compared with that of single phase forced convection heat exchanger. In particular, the heat transfer performance of each type heat exchanger is evaluated in relation to the pumping power.

  • PDF

Power Conditioning System for SMES Using Thyristor PWM Converter (싸이리스터 PWM 컨버터를 이용한 초전도자기에너지저장장치의 전력변환기)

  • Han, Byung-Moon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.6
    • /
    • pp.293-299
    • /
    • 2001
  • This paper proposes a new power conditioning system for the SMES composed of a thyristor PWM converter with a resonant commutation circuit. The operation of the proposed system and the dynamic interaction between SMES and the power system is analyzed by a theoretical approach with equivalent circuits and verified by computer simulations with EMTP, considering a typical 154kV power system. The proposed system can provide a solution for the power factor regulation and harmonic level reduction in the ac terminal with low-cost system configuration.

  • PDF

Analysis of the Performance Test Results of a Heat Pump for Closed Cooling Water Heat Recovery on a Combined Thermal Power Plant (복합화력의 냉각수 배열회수를 위한 히트펌프의 성능평가 사례 분석)

  • Lee, Sung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.541-546
    • /
    • 2014
  • The present study was conducted to determine whether ESCO Business is success or not. ESCO Business recovers the investment costs by the energy savings resulting from complementing existing energy facilities. The guaranteed parameters are Quantity of Heat Recovery, and Generator output drop. The results of the Performance Test show that the Quantity of Heat Recovery increased by 11.52 Gcal/h, and Generator output decreased by 0.234 MW, which satisfied the guarantee value.

Power and Heat Load of IT Equipment Projections for New Data Center's HVAC System Design (데이터센터의 공조시스템 계획을 위한 IT장비의 전력 및 발열량 예측에 대한 연구)

  • Cho, Jin-Kyun;Shin, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.212-217
    • /
    • 2012
  • The cooling of data centers has emerged as a significant challenge as the density of IT equipment increased. With the rapid increasing of heat load and cooling system, predictions for electronics power trends have been closely watched. A data center power density projection is needed so that IT organizations can develop data centers with adequate cooling for reasonable lifetimes. This paper will discuss the need for something more than processor and equipment power trend projections which have overestimated the required infrastructure for customers. This projection will use data from a survey of actual enterprise data centers and the ASHRAE projections to formulate a data center server heat load trend projection.

A Study on the Exergy Losses of Steam Power Plant (증기 원동소의 엑서지 손실에 관한 연구)

  • Park, J.C.;Jang, M.S.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.235-243
    • /
    • 1989
  • The purpose of this paper is to obtain enthalpy balance and exergy analysis for the energy losses in a steam power plant. The enthalpy and exergy analysis of the steam power plant were carried out on the various output of steam turbine. While enthalpy analysis shows that circulating loss in the condenser is maximum, exergy evaluation of the power plant shows that the losses of the boiler and turbine are considerably larger than those of condenser and feed water heater. Most irreversible losses of the power plant occur at the boiler. For improving the performance, the precise study about the irreversible losses of the boiler is necessary.

  • PDF

Design and Control of Novel Topology for Photovoltaic DC/DC Converter with High Efficiency under Wide Load Ranges

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.300-307
    • /
    • 2009
  • In this paper, design and control is proposed for a four input-series-output-series-connected ZVS full bridge converter for the photovoltaic power conditioning system (PCS). The novel topology for a photovoltaic (PV) DC/DC converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing PV module characteristics is proposed. The control scheme, including an input voltage controller is proposed to achieve equal sharing of the input voltage as well output voltages by a four series connected module. Design methods for ZVS power stage are also introduced. The total PV system is implemented for a 250-kW PV power conditioning system (PCS). This system has only three DC/DC converters with a 25-kW power rating and uses only one-third of the total PV PCS power. The 25-kW prototype PV DC/DC converter is introduced to verify experimentally the proposed topology. In addition, an experimental result shows that the proposed topology exhibits good performance.

A Study on the Improvement of Performance for Centralized Air Conditioning System by Using Air-Cooled Air Conditioner - The Case of Mokpo National Maritime University - (공랭식 에어컨을 이용한 중앙 집중 공조시스템의 성능 개선에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Kim, Hong-Ryel;Han, Seung-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, distributed the ship's Centralized Air Conditioning System the way an individual to replace the air conditioning system by using Air-cooled air conditioner. Research results, Individually separated air conditioning system complement the heat source control and thermal efficiency problems and improves the efficiency of the device was confirmed. In addition, under the same conditions refrigeration capacity and coefficient of performance of the device, an average of about 3 %, 23 ~ 26 %, higher, Chilled Water Plants Compressor power consumption is about 12 % lower. Also while heating under the same conditions, power consumption is about 33.5 % lower. Therefore Individually Separated Air Conditioning System greatly contributed to the improved performance of the device and living spaces for comfortable temperature and humidity control as well as heating source could be obtained.

A study of residential solar airconditioning system using bidirectional PWM converter (양방향성 PWM컨버터를 이용한 가정용 태양광 에어컨 시스템에 관한 연구)

  • 유권종;송진수;황인호;김홍성;고재석;최규하;김한성
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.358-364
    • /
    • 1996
  • Recently, much power demand from domestic power consumer is weakening the allowable power reserve margin in summer, especially at midday for one day due to a steep increase of air cooling loads such as air conditioner. Therefore solar airconditioning system can'be considered as one of the best remedies to meet the increase of peak power. Generally in solar air conditioning system, the diode rectifier is used to build up DC link voltage from AC source. The diode rectifier is simple and cheap but it brings out the problems of low power factor and plentiful harmonics at the AC source. Also It can derate the utilization rate of solar energy because the reverse of power flow cannot be made. Hence, in this paper to overcome the peak power problem in summer and to endure good AC input characteristics, solar air conditioning system using the PWM converter is proposed. As results, obtained are the characteristics of the PWM converter such as low distorted current waveform, high power factor and bidirectional power control. And also the stability of proposed system is verified by examining the dynamics of step load change and power reversal testing. (author). refs., figs., tabs.

  • PDF

Development of Power Conditioning System for High Power Fuel Cell System (대용량 연료전지 발전시스템용 전력변환기 개발)

  • Lee, Jin-Hee;Baek, Seung-Taek;Jung, Hong-Ju;Kang, Ho-Hyun;Chung, Joon-Mo;Suh, In-Young
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.530-532
    • /
    • 2007
  • This paper presents the design, development and performance of a power conditioning system (PCS) for application to a 250kW Molten Carbonate Fuel Cell (MCFC) generation system. A DSP controller was used to control the dc-dc and dc-ac converter operation for grid connection and power injection to the grid. The controller must also supervise the total PCS operation while communicating with the fuel cell system controller. A control method for parallel operation of dc-dc converters was proposed and verified. A 250kW prototype was successfully built and tested. Experimental performances are compared to minimum target requirements of the PCS for MCFC.

  • PDF