• Title/Summary/Keyword: power component

Search Result 2,495, Processing Time 0.034 seconds

A New fault Location Algorithm for a Line to Ground fault Using Direct 3-phase Circuit Analysis in Distribution Power Networks (3상회로 직접해석에 의한 배편계통 1선지락사고 고장거리 계산 알고리즘)

  • Choe, Myeon-Song;Lee, Seung-Jae;Lee, Deok-Su;Jin, Bo-Geon;Min, Byeong-Un
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.409-416
    • /
    • 2002
  • This paper presents a fault location algorithm using direct 3-phase circuit analysis for distribution power networks. The unbalanced feature of distribution networks due to single phase loads or asymmetric operation prohibits us from using the conventional symmetrical component transformation. Even though the symmetrical component transformation provides us with a very easy tool in three phase network analysis, it is limited to balanced systems in utilizing its strong point, which is not suitable for distribution networks. In this paper, a fault location algorithm using direct 3-phase circuit analysis is developed. The algorithm is derived and it Is shown that the proposed method if we use matrix inverse lemma, is not more difficult then the conventional methods using symmetrical component transformation. Since the symmetrical component transformation is not used in the suggested method, unbalanced networks also can be handled with the same difficulty as balanced networks. The case study results show the correctness and effectiveness of the proposed algorithm.

Study on a Scheme of Investment Considering Customer Interruption Cost in Power Distribution System (정전비용을 고려한 배전계통 설비의 투자 계획 수립 방안연구)

  • Chu, Cheol-Min;Kim, Jae-Chul;Lee, Tae-Hee;Moon, Jong-Fil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.365-369
    • /
    • 2006
  • It is concentrated on a methodology to establish a scheme of investment on power distribution systems of components. This paper provides a methodology to estimate the scheme as using a customer interruption cost regarding reliability indices in power distribution systems. The proposed method basically uses the failure rate depending on time for explaining the deterioration of a component. Therefore, the theory of the sensitivity is used for deciding the precedence of the investment to consider an effect of each component's failure rate on the system reliability. After Estimating the sensitivity on component investment cost making incremental reliability level is produced by component's investment cost accumulated according to the precedence of the sensitivity. After that, the failure rate corresponding with reliability level on the curve of investment cost is used as producing the curve of customer interruption cost. Two curves have the crossing point that is proposed to acceptable reliability level for customer and utility. In this paper, the acceptable reliability level for customer with the utility is assessed to analyze customer interruption cost and sensitivity of reliability indices. In conclusion the result of investment based on this method is shown to the reliability level with two cost.

  • PDF

A Simple Average Power Theory and Modified Compensation Performance Evaluation of Active Power Filters (능동전력필터의 간단한 평균전력이론과 수정된 보상성능 평가법)

  • 정영국;임영철;양승학
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.64-72
    • /
    • 1999
  • The fictitious power theory in time domain is very easy to understand, but power analyzing speed of active power is increased, because power is analyzed using signal tedmiques based on the corre1ation between voltage and current wavefonns. Also, conventional methods in time/frequency domain to evaluate the correlation performance of active power filters are not provided easy solutions. So, the authors have previously proposed 3-D current coordinates which is composed into active component, fundarrental reactive component and distorted component of nonlinear loads current. This trethod has excellent perfonnance, but can not evaluate the characteristics of nonlinear load current whether It is inductive or capacitive. Therefore, To overcorre problems trentioned previously, this paper deals with the simple average power theory and the modified 3-D current coordinates for evaluating the compensation perfonnance of active power filters. To confirm the validity, active power filter simulator is developed using C-language. From the simulation, results are discussed their utility.tility.

  • PDF

Compensation of Unbalanced PCC Voltage in Off-shore Wind Farms of PMSG Type Turbine

  • Kang, Jayoon;Han, Daesu;Suh, Yongsug;Jung, Byoungchang;Kim, Jeongjoong;Park, Jonghyung;Choi, Youngjoon
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.215-216
    • /
    • 2014
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

An Efficient Power Control Algorithm for Satellite Communications Systems with ATC

  • Kim, Byung-Gi;Ryoo, Sang-Jin;Hwang, In-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.129-133
    • /
    • 2008
  • In this paper, modified power control algorithms are proposed for a satellite mobile communications system with ATC (ancillary terrestrial component). In order to increase system capacity and reduce the transmitting power of the user's equipment, we propose the modified power control scheme consisting of the modified closed-loop and open-loop power control. The modified CLPC (closed-loop power control) algorithm, combining the delay compensation algorithms and pilot diversity, is mainly applied to the ATC link in urban areas because it is more suitable to the short RTD (round-trip delay). In the case of rural areas where ATCs are not deployed or a signal is not received from ATCs, combining monitoring transmitting power equipment and OLPC (open-loop power control) algorithms using an efficient pilot diversity is mainly applied to the link between the user's equipment and the satellite. Two power control algorithms are applied equally to the boundary areas where two kinds of signals are received in order to ensure coverage continuity. The simulation results show that the modified power control scheme has good performance compared to conventional power control schemes in a GEO (geostationary earth orbit) satellite system with ATC.

A classification of electrical component failures and their human error types in South Korean NPPs during last 10 years

  • Cho, Won Chul;Ahn, Tae Ho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.709-718
    • /
    • 2019
  • The international nuclear industry has undergone a lot of changes since the Fukushima, Chernobyl and TMI nuclear power plant accidents. However, there are still large and small component deficiencies at nuclear power plants in the world. There are many causes of electrical equipment defects. There are also factors that cause component failures due to human errors. This paper analyzed the root causes of failure and types of human error in 300 cases of electrical component failures. We analyzed the operating experience of electrical components by methods of root causes in K-HPES (Korean-version of Human Performance Enhancement System) and by methods of human error types in HuRAM+ (Human error-Related event root cause Analysis Method Plus). As a result of analysis, the most electrical component failures appeared as circuit breakers and emergency generators. The major causes of failure showed deterioration and contact failure of electrical components by human error of operations management. The causes of direct failure were due to aged components. Types of human error affecting the causes of electrical equipment failure are as follows. The human error type group I showed that errors of commission (EOC) were 97%, the human error type group II showed that slip/lapse errors were 74%, and the human error type group III showed that latent errors were 95%. This paper is meaningful in that we have approached the causes of electrical equipment failures from a comprehensive human error perspective and found a countermeasure against the root cause. This study will help human performance enhancement in nuclear power plants. However, this paper has done a lot of research on improving human performance in the maintenance field rather than in the design and construction stages. In the future, continuous research on types of human error and prevention measures in the design and construction sector will be required.

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

Output Power Control of Wind Generation System by Machine Loss Minimization

  • Abo-Khalil Ahmed;Lee Dong-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.51-54
    • /
    • 2005
  • Generator efficiency optimization is important for economic saving and environmental pollution reduction. In general, the machine loss can be reduced by the decreasing the flux level, resulting in the significant reduction of the core loss. This paper proposesan model-based controller is used to decrement the excitation current component on the basis of measured stator current and machine parameters and the q-axis current component controls the generator torque, by which the speed of the induction generator iscontrolled according to the variation of the wind speed in order to produce the maximum output power. The generator reference speed is adjusted according to the optimum tip-speed ratio. The generated power flows into the utility grid through the back-to-back PWM converter. The grid-side converter controls the dc link voltage and the line-side power factor by the q-axis and the d-axis current control, respectively. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Power Quality Signal Compression and Restoration based on Two Component (두 성분을 이용한 전력품질 신호의 압축 및 복구)

  • Chung, Young-Sik;Kim, Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.125-126
    • /
    • 2006
  • Data storage and data communication currently pose a major problems for all parties involved with power quality and power system monitoring. The Problem aries from the tremendous amount of data involved. There is a common desire in the power industry to find new techniques for high-accuracy data compression and data storage. This paper introduces a data compression technique that is very suitable for application to power quality waveforms. The proposed technique is applied in splitting the monitored signal into two components. Those are stationary and nonstationary components. Each component is compressed and encoded.

  • PDF