• Title/Summary/Keyword: power component

검색결과 2,495건 처리시간 0.043초

Fault Current Analysis of HTS Power Cable (고장전류에 의한 초전도 전력케이블의 내부전류 변화 분석)

  • Bang, Jong-Hyun;Je, Hyang-Ho;Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Yoon, Jae-Young;Jang, Hyun-Man;Lee, Su-Kil;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.290-291
    • /
    • 2006
  • HTS(High Temperature Superconductivity) Power Cable has a different characteristic with conventional distribution line, so installation and operation condition are different. In this paper, internal fault current characteristic s of HTS power cable was analyzed. For this, EMTDC model component of HTS power cable was developed. The developed EMTDC model component is applied to distribution line, then authors analyze internal current characteristics of HTS Power cable when fault occurred.

  • PDF

A Low-Power CMOS Current Reference Circuit (저전력 CMOS 기준전류 발생회로)

  • 김유환;권덕기;이종렬;유종근
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, a simple low-power CMOS current reference circuit is proposed. The reference circuit includes parasitic pnp BJTs and resistors. Temperature compensation is made by adding a current component proportional to a thermal voltage to a current component proportional to a base-to-emitter voltage. The designed circuit has been simulated using a 0.25${\mu}{\textrm}{m}$ n-well CMOS process parameters. The simulation results show that the reference current is 34.96$mutextrm{A}$$\pm$0.04$mutextrm{A}$ in the temperature range of -2$0^{\circ}C$ to 12$0^{\circ}C$ The reference current varies less than 0.6% when the power supply voltage changes from 2.5V to 3.5V For $V_{DD=5V}$ and T=3$0^{\circ}C$ the power consumption is 520㎼ during normal operation but reduces to 0.l㎻ during power-down mode.

  • PDF

Evaluation of Single Point Vulnerability on Korean Standard Nuclear Power Plants (국내 표준형 원전의 단일 고장 취약성(SPV) 평가)

  • Chi, Moon-Goo;Kim, Myung-Su
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.685-686
    • /
    • 2008
  • For the purpose of reducing the plant trip/transient by the failure of a single component during plant operation or maintenance, the list of critical components with Single Point Vulnerability (SPV) on KSNP (Korean Standard Nuclear Power Plant), the standardized methodology of SPV evaluation and the plan to improve reliability of the equipment have been established. In addition, SPV component lists for the other domestic operating Nuclear Power Plants have been made, and the proper procedure for SPV management will be developed.

  • PDF

3-Phase Hybrid Series Active Power Filter with Dynamic Voltage Restorer (DVR 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • Han Seok-Woo;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.598-602
    • /
    • 2002
  • This paper presents the 3-phase hybrid series active power filter with dynamic voltage restorer(DVR) which serve as an energy buffer and current harmonics blocking resistor connected to sensitive loads, such as, to compensate voltage dips and current harmonics in power distribution system. The DVR is to inject a dynamically controlled voltage generated by a forced commutated converter in series to the bus voltage by means of a booster transformer. The momentary amplitudes of the three injected phase voltages are controlled such as to eliminate any detrimental effects of a bus fault to the load voltage. The proposed system is able to simultaneously compensate current harmonics, voltage fluctuating and voltage unbalance in power distribution systems. The reference phase angle detected by synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The effectiveness of proposed system is verified by the computer simulation.

  • PDF

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.

A Reduced Component count Single-stage Electrolytic Capacitor-less Interleaved Totem-pole On-board Battery Charger (적은 소자수를 갖고 전해커패시터가 없는 단일단 인터리브드 토템폴 전기자동차 탑재형 충전기)

  • Kim, Byeong-Woo;Cho, Woo-Sik;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제22권6호
    • /
    • pp.510-516
    • /
    • 2017
  • This paper proposes a single-stage interleaved totem-pole on-board battery charger with a simple structure and a reduced component count. Apart from achieving ZVS turn-on of all switches and ZCS turn-off of all diodes, this charger does not require an input filter due to its CCM operation and bulky electrolytic capacitors, which in turn result in a high power density. A single-stage power conversion technique is applied to the interleaved structure in order to achieve a high power density and high efficiency. A 2.5 kW prototype of the proposed charger is also built and tested to validate the proposed operation.

CPLD Low Power Technology Mapping for Reuse Module Design under the Time Constraint (시간제약 조건하에서 재사용 모듈 설계를 통한 CPLD 저전력 기술 매핑)

  • Kang, Kyung Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제4권3호
    • /
    • pp.77-83
    • /
    • 2008
  • In this paper, CPLD low power technology mapping for reuse module design under the time constraint is proposed. Traditional high-level synthesis do not allow reuse of complex, realistic datapath component during the task of scheduling. On the other hand, the proposed algorithm is able to approach a productivity of the design the low power to reuse which given a library of user-defined datapath component and to share of resource sharing on the switching activity in a shared resource. Also, we are obtainable the optimal the scheduling result in experimental results of our using chaining and multi-cycling in the scheduling techniques. Low power circuit make using CPLD technology mapping algorithm for selection reuse module by scheduling.

Design of a Hydraulic System for a Power Split type CVT (동력분기식 무단변속기의 유압구동부 설계)

  • 김정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제12권1호
    • /
    • pp.168-173
    • /
    • 2004
  • This article describes the design of a hydraulic system for a power split type continuously variable transmission (CVT). The CVT considered here, is composed of planetary gears, clutches, and a torque converter which is mainly used for the realization of CVT function. Similar to automatic transmissions, the hydraulic system of CVT is designed for supplying hydraulic flows and pressures to each component of CVT, in order to activate the clutch engagements and torque converter operation, and to cool the drivetrain. By using the mathematical models of drivetrain, a simulation program was developed to investigate the power performance of CVT equipped vehicle and the operating conditions of each component of CVT. And the design parameters of the hydraulic system and clutches were calculated using the operating conditions and power requirements which obtained from the simulation results. Finally the hydraulic circuit design of prototyped valve body is presented based on the numerical results of this analysis.

Analysis for Electrical Stress of Power Capacitor (전력용 커패시터의 전기적 스트레스 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제57권4호
    • /
    • pp.370-376
    • /
    • 2008
  • Power capacitors is widely used for power factor correction and component of passive filter in the user power systems. Recently, application of non-linear load is gradually increased. Non-linear load produces harmonic components of current. There are series resonance and parallel resonance when capacitors are applied in the user electrical application. If this harmonic component matches resonance, voltage and current is magnified and has severely an influences on capacitor. This paper purposes a new method for the magnitude of voltage and current by the frequency scan analysis without equivalent circuit for the actual circuit at the resonance condition.

Optimal Design of Boost Inductor using Planar Magnetics Component (Planar Magnetic 소자를 사용한 부스트 인덕터의 최적 설계)

  • Shin, Yong-Hee;Jang, Hai-Jin;Kim, Chang-Sun;Lee, Chul-Kyung;Youn, Dae-Young
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1106-1107
    • /
    • 2007
  • Planar magnetic based design technologies have been widely applied to power design for better cooling and ease of fabrication. The planar transformer and the planar inductor have a low profile characteristics compare to the conventional transformer which would be more cubical in volume. High frequency operation of magnetic components is a main key to achieve high power density of the power module. However, at a high frequency, the skin effect and the proximity effect have to be considered very significantly in magnetic design and also the parasitics in the converter cannot be ignored. This paper deals with the design and the experiment of planar integrated magnetic component. The optimal design for planar magnetics is summarized.

  • PDF