• Title/Summary/Keyword: power cable insulation

Search Result 244, Processing Time 0.025 seconds

Insulation Reinforcement of the Electrical Power Cable Degradated by the Water Tree Using Silicon (실리콘을 이용한 수트리 열화된 전력 케이블의 절연 보강)

  • Kang, Hyeong-Gon;Park, Jun-Chae;Ko, Seok-Cheol;Lim, Sung-Hun;Lee, C.H.;Hanh, Y.B.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.468-471
    • /
    • 2003
  • Fault of under ground power cable occurs usually from the water tree such as the vented tree, the bow tree and the water-rich halo. The water tree penetrates to the polyethylene cable insulations. Sometimes, the water tree also diffuses to mother cable in the substation. In this paper, instead of replacement of the faulty cable, we tried to cure an electrical power cable degraded by the water trees with silicon injection method. And measured the results with the isothermal relaxation current analysis method. After cable cure, Chonil line was improved from 2.27 to 1.96 in a phase, from 2.148 to 2.020 in b phase, and from badness to 2.192 in c phase. And Keumam line was also improved from 2.419 to 1.920 in a phase, from 2.301 to 2.000 in b phase, and from badness to 1.957 in c phase.

  • PDF

THE TRACKING CHARACTERISTICS BY THE DIFFERENT CROSSLINKED DENSITY OF SILICONE RUBBER MATERIAL USED FOR OUTDOOR INSULATION (옥외용 실리콘 고무재료의 가교도에 따른 내트랙킹 특성)

  • Kim, D.W.;Lee, C.Y.;Hong, J.Y.;Baek, J.H.;Lee, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1058-1060
    • /
    • 1995
  • In this paper, we studied the tracking characteristics of silicone rubbers that differed in the degree of crosslinking. As the tracking method, we adopted ASTM D 2303 and Merry-Go-Round(MGR) test method. It was found that the higher the degree of crosslinking, the better tracking characteristics. In these two test methods, specimens showed similar tendency of performance variation according to the degree of crosslinking. However the degradation phenomena were very different. As for MGR method, only the color of specimens' surface changed without any erosion or tracking path on them. On the contrary, the specimens subjected to ASTM D 2303 test method showed severe erosion.

  • PDF

A Study on the Partial Discharge Phase Properties with Branch Type Eleotrical Tree Growth in XLPE Cable Insulation (XLPE 케이블 절연체에서의 가지형 전기트리 성장에 따른 부분방전 위상 특성 연구)

  • Gang, Dong-Sik;Seon, Jong-Ho;Kim, Wi-Yeong;Lee, Hong-Sik;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.213-221
    • /
    • 2002
  • In order to improve the reliability of XLPE cables, it is necessary to find the useful diagnostic parameter according to long term aging. This paper described the change of partial discharge(PD) phase Properties of XLPE cable insulation with branch type electrical tree degradation. for long term aging. To understand the PD Properties with $\phi$ -q-n distributed shape of XLPE insulation, specimens were prepared by 22.9㎸ distribution cable and made in a type of block(16${\times}$16${\times}$3[mm]). Ogura needles having tip radius of l0${\mu}{\textrm}{m}$ were inserted into each block pieces. The measuring system was consisted of PD detector, digitizer for digital conversion, VXI system for signal processing. The PD properties of the specimens were measured from initiation of tree to breakdown and their characteristics were analyzed. We analyzed the relationship between electrical properties(PD Quantity, PD initiation angle, PD extinction angle, PD occurrence angle : (PD extinction angle - PD initiation angle)) and the normalized aging rate. We found PD parameter, PD initiation angle and occurrence angle, which are a useful diagnostic parameter in estimating the branch type electrical tree for XLPE insulation condition.

Insulation Aging Characteristic Assessment on the Power cables with the Comparative Analysis Between Destructive and Nondestructive Diagnosis (파괴 및 비파괴진단 비교분석을 통한 케이블 열화특성평가)

  • Yi, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.104-108
    • /
    • 2009
  • The insulation aging characteristics and structural analysis test were performed to analyze the correlations among the insulation deterioration, diagnostic results and the breakdown strength for the underground power cables. From the results of the degree of crosslinking test, hot-oil test etc., it could be confirmed that there were no manufacturing defects in the power cables under test. From the results of the water tree test and chemical structural analysis, it could be confirmed that the aging status of cable under test were very poor, especially for B-Phase and the degree of aging was increased in the orders of A, C and B-phase. From the above results, it could be concluded that the insulation aging characteristic analysis results were well consistent with the diagnostic and breakdown test results, and also confirmed that the diagnostic system under consideration was successful to discriminate the bad cables which is likely to cause cable system failure.

Analysis of Diagnosis and Very Low Frequency Experiment to Detect of Fault on 22.9kV Class Cable (22.9kV급 케이블 결함 검출을 위한 초저주파 실험 및 현장 진단 분석)

  • Kim, Young-Seok;Kim, Taek-Hee;Kim, Chong-Min;Shong, Kil-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1780-1785
    • /
    • 2016
  • This paper presents few case studies of state diagnosis of XLPE cables using very low frequency techniques. The power cables of 22.9kV which have installation fault were assessed using VLF technique in addition to other techniques like insulation resistance and DC voltage withstand test. From the experimental results, The dielectric loss($tan{\delta}$) values of degradation of the cable(joint, knife, needle) at $U_0$ were 5.839, 5.526 and 6.251, respectively and all values were "further study advised". VLF PD measurement was also found defective portion. These method was effective in defect to fault in the degradation of the cable. However, the breakdown did not occur in the degradation of the cable because of properties of XLPE insulation. Few case studies of using VLF $tan{\delta}$ diagnosis for fault are measured and analyzed. The $tan{\delta}$ values at $U_0$ were "further study advised" or "action required".

Effect oh Heat Treatment on Breakdown Properties in the Joint Interface of Power Cables (전력케이블 절연접속계면의 절연파괴 특성에 미치는 열처리 효과)

  • 이창종;김진수;박강식;한상옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.502-507
    • /
    • 1998
  • The purpose of this study is to investigate the breakdown properties in joint interface of power cables with heat treatment. The specimens have the structure of XLPE/EPDM interface like the joint of distribution power cable. The breakdown characteristics of the SLPE/EPDM joint were studied with crosslinking by=products. AC breakdown voltages were measured with heat treatment time and interfacial materials and crosslinking by-products as testing factors. This study has shown that crosslinking by-product gases play an important role at the insulation properties of cable joints by heating. The dielectric strength shows the lowest values at 4 hours heat treatment. The AC breakdown strength in the untreated sample was increased with heat treatment time.

  • PDF

Impurities of the Semiconductive Shield in the Power Distribution Cable (배전용 전력케이블의 반도전층에 함유되어 있는 불순물 분석)

  • Kim, S.J.;Song, I.K.;Kim, J.Y.;Han, J.H.;Suh, K.S.;Lee, C.R.;Lee, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1794-1796
    • /
    • 1996
  • In order to evaluate the soundness of 10 year service-aged XLPE-insulated 22.9 kV underground distribution cables, semiconductive shields have been characterized. The edge of insulation near the insulation shield shows a drastic decrease of OIT. Impurities such as Ca, Mg, Fe, Cu were detected in both conductor and insulation shields. Their concentrations at the insulation shield are much higher than those at the strand shield. All these facts suggest that the edge of insulation near the insulation shield is degraded considerably, which might be attributed to the oxidation reaction of insulation by a large amount of impurities in the insulation shield.

  • PDF

Analysis on Lightning Overvoltage According to Lead Length of Surge Arrester for Underground Cable Outdoor Termination Protection at C/H Tower (C/H 철탑 종단접속함 보호용 피뢰기 리드선 길이에 따른 뇌과전압 분석)

  • Jung, Chae-Kyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.257-263
    • /
    • 2016
  • This paper describes the lightning arrester transients in cable head termination. The installation references of cable head tower and lightning arresters are firstly reviewed, then the performance of lightning arrester operation is also evaluated based on lightning overvoltage analysis by the change of grounding lead cable length. This paper finally proposes the optimal length of grounding lead cable at the cable head termination. The limited lightning current is also proposed according to the change of grounding lead cable length. The results will contribute to protecting insulation breakdown failure against lightning surge at the terminations and joints.

Study on the Evaluation Methode of HVDC Cable (HVDC 케이블 평가방법 연구)

  • An, Y.H.;Jang, T.I.;Jung, G.J.;Yu, H.Y.;Kim, J.N.;Jeon, S.I.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.229-231
    • /
    • 2005
  • HVDC(High Voltage Direct Current) is an underwater cable between Jeju Island and Haenam in main land and supplies approximately 50% of electrical usage in Jeju Island. If there is any power failure due to HVDC, it will cost approximately 50,000 US dollars per day including Thermal Electrical Generation. Therefore it is absolutely necessary to recover the problem in rapid timely basis. In conclusion, evaluation methode of HVDC cable is needed urgently to upgrade current HVDC underwater cable repair technique in Korea to minimize the cost and time factors.

  • PDF

Design of 22.9kV High Temperature Superconducting Cable Considering AC losses and Stability (교류손실 및 안정성을 고려한 22.9kV 초전도 케이블 설계)

  • Jang, H.M.;Lee, C.Y.;Kim, C.D.;Sim, K.D.;Cho, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1210-1212
    • /
    • 2005
  • High temperature superconducting(HTS) power cable system consists of HTS cable, termination and cryogenic system. And the HTS cable consists of the former, HTS phase conductor, electric insulation, HTS shield and cryostat. Taking the advantage of HTS shield, the cold dielectric has been adopted. The phase conductor and the shield have been designed to minimize the AC loss below 1W/m/phase. The former has been designed to transport the fault current of 25kA, at fault condition. This paper describes the design process of 22.9kV HTS cable considering AC losses at normal state and the stability at fault condition.

  • PDF