• Title/Summary/Keyword: power NOMA in 5G

Search Result 42, Processing Time 0.023 seconds

A New Incentive Based Bandwidth Allocation Scheme For Cooperative Non-Orthogonal Multiple Access (협력 비직교 다중 접속 네트워크에서 새로운 인센티브 기반 주파수 할당 기법)

  • Kim, Jong Won;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.173-180
    • /
    • 2021
  • Non Orthogonal Multiple Access (NOMA) is a technology to guarantee the explosively increased Quality of Service(QoS) of users in 5G networks. NOMA can remove the frequent orthogonality in Orthogonal Multiple Access (OMA) while allocating the power differentially to classify user signals. NOMA can guarantee higher communication speed than OMA. However, the NOMA has one disadvantage; it consumes a more energy power when the distance increases. To solve this problem, relay nodes are employed to implement the cooperative NOMA control idea. In a cooperative NOMA network, relay node participations for cooperative communications are essential. In this paper, a new bandwidth allocation scheme is proposed for cooperative NOMA platform. By employing the idea of Vickrey-Clarke-Groves (VCG) mechanism, the proposed scheme can effectively prevent selfishly actions of relay nodes in the cooperative NOMA network. Especially, base stations can pay incentives to relay nodes as much as the contributes of relay nodes. Therefore, the proposed scheme can control the selfish behavior of relay nodes to improve the overall system performance.

Non-Orthogonal Multiple Access (NOMA) to Enhance Capacity in 5G

  • Lim, Sungmook;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.38-43
    • /
    • 2015
  • Non-orthogonal multiple access (NOMA) where all users share the entire time and frequency resource has paid attention as one of the key technologies to enhance the spectral efficiency and the total throughput. Nevertheless, as the number of users and SIC error increase, the inter-user interference and the residual interference due to the SIC error also increase, resulting in performance degradation. In order to mitigate the performance degradation, we propose grouping-based NOMA system. In the proposed scheme, all users are divided into two groups based on the distance between the BS and each user, where one utilizes the first half of the bandwidth and the other utilizes the rest in the orthogonal manner. On the other hand, users in each group share the spectrum in the non-orthogonal manner. Grouping users can reduce both the inter-user interference and residual interference due to the SIC error, so it can outperform conventional NOMA system, especially in case that the number of users and the SIC error increase. Based on that, we also present the hybrid operation of the conventional and the proposed NOMA systems. In numerical results, the total throughput of the proposed NOMA systems is compared with that of the conventional NOMA systems with regard to the number of users and SIC error. It is confirmed that the proposed NOMA system outperforms the conventional NOMA system as the number of users and the SIC error increase.

Impacts of Non-Uniform Source on BER for SSC NOMA (Part II): Improved BER Performance Analysis

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.48-54
    • /
    • 2021
  • In most existing researches on non-orthogonal multiple access (NOMA) with symmetric superposition coding (SSC), uniform sources have been usually considered. For the first part in this two-part paper, for the strongest channel gain user, we showed that the bit-error rate (BER) for the optimal maximum a-posteriori (MAP) receiver for the non-uniform source improves slightly, compared to that of the conventional receiver for the uniform sources. We demonstrate that in communication scenarios of the non-uniform source NOMA schemes, for the weakest channel gain user, the BER performance of the optimal MAP receiver for a non-uniform source improves greatly, compared to that of the conventional receiver for uniform sources. We first derive an analytical expression of the BER for non-uniform source NOMA with SSC. Then, simulations demonstrate that the BER of the optimal MAP receiver for the non-uniform source improves, compared with that of the conventional maximum likelihood (ML) receiver for the uniform sources. In result, the proposed optimal MAP receiver for the non-uniform source could be a promising scheme for SSC NOMA, with improved BER performances.

Channel Capacity for NOMA Weak Channel User and Capacity Region for NOMA with Gaussian Mixture Interference

  • Chung, Kyuhyuk
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.302-305
    • /
    • 2019
  • Non-orthogonal multiple access (NOMA) has been considered for the fifth generation (5G) mobile networks to provide high system capacity and low latency. We calculate the channel capacity for the weak channel user in NOMA and the channel capacity region for NOMA. In this paper, Gaussian mixture channel is compared to the additive white Gaussian noise (AWGN) channel. Gaussian mixture channel is modeled when we assume the practical signal modulation for the inter user interference, such as the binary phase shift keying (BPSK) modulation. It is shown that the channel capacity with BPSK inter user interference is better than that with Gaussian inter user interference. We also show that the channel capacity region with BPSK inter user interference is larger than that with Gaussian inter user interference. As a result, NOMA could perform better in the practical environments.

Design of User Clustering and Robust Beam in 5G MIMO-NOMA System Multicell (5G MIMO-NOMA 시스템 멀티 셀에서의 사용자 클러스터링 및 강력한 빔 설계)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • In this paper, we present a robust beamforming design to tackle the weighted sum-rate maximization (WSRM) problem in a multicell multiple-input multiple-output (MIMO) - non-orthogonal multipleaccess (NOMA) downlink system for 5G wireless communications. This work consider the imperfectchannel state information (CSI) at the base station (BS) by adding uncertainties to channel estimation matrices as the worst-case model i.e., singular value uncertainty model (SVUM). With this observation, the WSRM problem is formulated subject to the transmit power constraints at the BS. The objective problem is known as on-deterministic polynomial (NP) problem which is difficult to solve. We propose an robust beam forming design which establishes on majorization minimization (MM) technique to find the optimal transmit beam forming matrix, as well as efficiently solve the objective problem. In addition, we also propose a joint user clustering and power allocation (JUCPA) algorithm in which the best user pair is selected as a cluster to attain a higher sum-rate. Extensive numerical results are provided to show that the proposed robust beamforming design together with the proposed JUCPA algorithm significantly increases the performance in term of sum-rate as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.

Non-interfering Non-orthogonal Multiple Access: With Application to Improving BER of Weakest Channel User in 3-User 2PAM (비간섭 비직교 다중접속: 삼중 2PAM의 최약 채널 사용자의 BER 향상 관점에서)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.585-590
    • /
    • 2021
  • This paper proposes a 3-user non-interfering binary pulse amplitude modulation(2PAM) and non-orthogonal multiple access(NOMA) scheme, to improve the bit-error rate(BER) performance of the weakest channel user with the tolerable BER loss of the stronger channel users. First, we design the 3-user non-interfering 2PAM NOMA, and then derive the closed-form expressions for the BERs of the proposed scheme. Numerical results are also presented to demonstrate that the BER of the weakest channel user improves greatly, with the small BER losses of the stronger channel users. As a result, the non-interfering 2PAM could be considered in NOMA of 5G systems.

Impacts of Non-Uniform Source on BER for SSC NOMA (Part I): Optimal MAP Receiver's Perspective

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.39-47
    • /
    • 2021
  • Lempel-Ziv coding is one of the most famous source coding schemes. The output of this source coding is usually a non-uniform code, which requires additional source coding, such as arithmetic coding, to reduce a redundancy. However, this additional source code increases complexity and decoding latency. Thus, this paper proposes the optimal maximum a-posteriori (MAP) receiver for non-uniform source non-orthogonal multiple access (NOMA) with symmetric superposition coding (SSC). First, we derive an analytical expression of the bit-error rate (BER) for non-uniform source NOMA with SSC. Then, Monte Carlo simulations demonstrate that the BER of the optimal MAP receiver for the non-uniform source improves slightly, compared to that of the conventional receiver for the uniform source. Moreover, we also show that the BER of an approximate analytical expression is in a good agreement with the BER of Monte Carlo simulation. As a result, the proposed optimal MAP receiver for non-uniform source could be a promising scheme for NOMA with SSC, to reduce complexity and decoding latency due to additional source coding.

Pseudo Complex Correlation Coefficient: with Application to Correlated Information Sources for NOMA in 5G systems

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2020
  • In this paper, the authors propose the pseudo complex correlation coefficient (PCCC) of the two complex random variables (RV), because the four real correlation coefficients (RCC) of the corresponding four real RVs cannot be obtained only from the complex correlation coefficient (CCC) of given two complex RV. Such observation is motivated by the general statement; "The complex jointly-Gaussian random M-vector cannot be completely described by the complex covariance matrix, even though the real Gaussian random 2M-vector can be completely descried by the real covariance matrix. Therefore, in order to describe completely the complex jointly-Gaussian random M-vector, we need an additional matrix, namely the complex pseudo-covariance matrix, along with the complex covariance matrix." Then, we apply PCCC to correlated information sources (CIS) for non-orthogonal multiple access (NOMA) in 5G system, and investigate impact of the proposed PCCC on the achievable data rate of the stronger channel user in the conventional successive interference cancellation (SIC) NOMA with CIS. It is shown that for the given same CCC, the achievable data rates with the different PCCC are different, because the corresponding RCC are different. We also show that as the absolute value of the same CCC increases, the impact of the different PCCC becomes more significant.

On Negative Correlation Bit-to-Symbol(: B2S) Mapping for NOMA with Correlated Information Sources in 5G Systems (5G 시스템에서 상관 정보원의 비직교 다중접속을 위한 음수의 상관관계 계수 B2S 사상)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.881-888
    • /
    • 2020
  • In this paper, in order to improve the degraded BER performance of the stronger channel user in non-orthogonal multiple access(: NOMA) with interactive mobile users, we propose the negative correlation bit-to-symbol(: B2S) mapping. First, the closed-form expression for the BER of the negative correlation B2S mapping receiver is derived, and then it is shown that the BER of the negative correlation B2S mapping receiver is improved, compared with those of the ideal perfect successive interference cancellation(: SIC) receiver and positive correlation receiver. Additionally, based on the analytical expression, signal-to-noise(: SNR) gain is calculated, and the superiority of the negative correlation B2S mapping receiver is validated.

Numerical Analysis of Sufficient Condition on Larger Rate Volume of CIS/non-SIC over IIS/SIC in 3-User NOMA (삼중 사용자 비직교 다중 접속에서 IIS/SIC에 대한 CIS/non-SIC의 확대 전송률 용적의 충분조건의 수치 해석)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.29-35
    • /
    • 2021
  • Since a sufficient condition on the larger rate volume of 3-user correlated information sources (CIS)/non-successive interference cancellation (SIC) non-orthogonal multiple access (NOMA) over independent information sources (IIS)/SIC NOMA has not been investigated, this paper analyzes such a sufficient condition. First, we demonstrates that the rate volume of 3-user CIS/SIC NOMA is the same as a portion of the rate volume of 3-user IIS/SIC NOMA. Then, by identifying a dominant rate region, we calculate the sufficient condition on the larger rate volume of 3-user CIS/non-SIC NOMA over 3-user IIS/SIC NOMA. We also show that with such condition, the rate volume of 3-user CIS/non-SIC NOMA can be larger than that of 3-user IIS/SIC NOMA.