• Title/Summary/Keyword: powdered products

Search Result 104, Processing Time 0.017 seconds

Color, Volatiles and Organoleptic Acceptability of Mixed Powders of Red Ginseng and Cheonggukjang (홍삼과 청국장 혼합 분말의 색도, 휘발성 성분 및 관능적 기호도)

  • Kwon Joong-Ho;Shin Jin-Ki;Moon Kwang-Deog;Chung Hun-Sik;Jeong Yong-Jin;Lee Eun-Joo;Ahn Dong-U.
    • Food Science and Preservation
    • /
    • v.13 no.4
    • /
    • pp.483-489
    • /
    • 2006
  • Considering the development of fusion ingredients rom red ginseng and Cheonggukjang (soybean-fermented food), their commercial powders were evaluated in their Hunter's colors, volatile compounds, and sensory properties depending on manufacturing companies and mixing ratio of both powdered products. Hunters L, a and b values of red ginseng powders were $75.56\sim85.50,\;1.90\sim6.30,\;and\;23.29\sim35.08$, respectively, while those of Cheonggukjang powders were $64.96\sim71.69,\;4.64\sim8.30,\;and\;30.45\sim36.50$, respectively. Volatile compounds were mainly composed of hexanal, $\beta-pinene$, methyl benzene, 3,5-methyl propyl nonane, 2-propanone, decane, and 2,8-dimethyl undecane in red ginseng samples, and of 2,3-butanedione, decane, 2,2,7,7-tetramethyl octane, and 3-methyl butanal in Cheonggukjang samples. Total volatiles of the mixed samples decreased as ginseng decreased and Cheonggukjang increased. The mixed sample of both red ginseng and cheonggukjang in same amounts was the highest in its sensory acceptability, which was composed in the order of 2-propanone, 2-butanone, pentane, hexanal and 3-methyl butanal. The above results indicate that red ginseng and Cheonggukjang showed a potential as fusion ingredient for preparing new functional produce through further processing.

A Study for Recoverability of Iron Resource in Red Mud (레드머드 내 철 자원 회수 가능성 고찰)

  • Kim, Bong-Ju;Kwon, Jang-Soon;Koh, Yong-Kwon;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.297-306
    • /
    • 2020
  • The red mud generated from bauxite during the Bayer alumina production process has been regarded as an industrial waste due to the high alkaline property and high content of Na. Despite of its environmental problem, various studies for recovery of the valuable resources from red mud has been also carried out because of high content (25.7 wt.% as Fe2O3 in this study) of iron in red mud. In order to recover the iron resource in the red mud, microwave heating experiments were performed with adding of activated carbon and elemental sulfur to the red mud. Through the microwave heating the powdered red mud mixtures converted to porous and vitrified solid aggregates. The vitrified aggregates produced by microwave heating are composed of goethite, zero valent iron (Fe0), pyrrhotite and pyrite. And then, the microwave heating samples were dissolved in the aqua regia solution, and Fe precipitates were obtained as a Fe-chlorides by adding of NaCl salt in the aqua regia solution. The Fe recovery rates in the Fe-chloride precipitates showed differences depending on the experimental mixture conditions, and Fe grades of the end products are 49.0 wt.%, 58.0 wt.% and 59.5 wt.% under mixture conditions of red mud, red mud + activated carbon, and red mud + activated carbon + elemental S, respectively. The Fe content of 56.0 wt.% is generally known as the grade value of Fe in a iron ore for iron production, and the Fe grades of microwave heating samples with adding activated carbon and elemental S in this study are higher than the grade value of 56.0 wt.%.

The Influence and Implications of Flower Vessels (花器) Supervised Process of Production During the Joseon Dynasty in the Early 15th Century (15세기 초반 경상도 상주목 일대 화기(花器)의 감조(監造) 배경과 견양(見樣)으로서의 의미)

  • Oh, Young-in
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.112-129
    • /
    • 2019
  • This study investigates the influence and implications of the supervised process of production of flower vessels (花器) in 1411. The type, the production method, and the purpose of flower vessels (花器) were determined based on the workshops appearing in King Sejong-Sillok, Chiriji ("世宗實錄" "地理志") and Gyeongsang-do Chiriji ("慶尙道地理志"), considering articles excavated from Sangju kiln sites. In addition, the implications and the starting point of production of flower vessels (花器) in the Joseon Dynasty were identified. During the Joseon Dynasty, an effort was made to reorganize the government offices, to align ritual systems in the early 15th century. Preparation for rituals, preparation of supplemental utensils used in ancestral rites (祭器), the construction of architecture related to the Royal Family, and the production of weaponry (武器) were supervised. In 1411, flower vessels (花器) had a preferred supervised process of production as well, which means being recognized as a subject of maintenance for the Joseon Dynasty's aims. Flower vessels (花器) had been produced using grayish-blue powdered celadon (粉靑沙器) as flower pots (花盆), and as celadon flower pot-support (花臺), at Sangju kiln sites in particular, since 1411. Interestingly, products had been manufactured in royal kilns as well as in a few other kilns similar to the supervised process of production of flower vessels (花器) in the middle of the 15th century. It means that this effected the Gyeon-yang (見樣) supervised process of flower vessel (花器) production in 1411. At that time, the Joseon Dynasty used Gyeon-yang (見樣) for imperial gifts for the Ming Dynasty and on separate manufactured articles to ensure the standards of production. Gyeon-yang (見樣) affected the production of ceramic utensils used in ancestral rites (祭器), and government officials in Saongwon (司饔院) supervised the production of ceramics for the Royal Family year after year. In sum, it was flower vessels (花器) using Gyeon-yang (見樣) that provided precise production rules to supervise the process of production in 1411.

Antioxidant and Antibacterial Activities of Glycyrrhiza uralensis Fisher (Jecheon, Korea) Extracts Obtained by various Extract Conditions (한국 제천 감초(Glycyrrhiza uralensis Fisher)의 추출 조건별 추출물의 항산화 및 항균 활성 평가)

  • Ha, Ji Hoon;Jeong, Yoon Ju;Seong, Joon Seob;Kim, Kyoung Mi;Kim, A Young;Fu, Min Min;Suh, Ji Young;Lee, Nan Hee;Park, Jino;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.361-373
    • /
    • 2015
  • This study was carried out to evaluate the antioxidant and antibacterial activities of Glycyrriza uralensis Fisher (Jecheon, Korea) extracts obtained by various extraction conditions (85% ethanol, heating temperatures and times), and to establish the optimal extraction condition of G. uralensis for the application as cosmetic ingredients. The extracts obtained under different conditions were concentrated and made in the powdered (sample-1) and were the crude extract solutions without concentration (sample-2). The antioxidant effects were determined by free radical scavenging activity ($FSC_{50}$), ROS scavenging activity ($OSC_{50}$), and cellular protective effects. Antibacterial activity was determined by minimum inhibitory concentration (MIC) on human skin flora. DPPH free radical scavenging activity of sample-1 ($100{\mu}g/mL$) was 10% higher in group extracted for 6 h than 12 h, but sample-2 didn't show any significant differences. The extraction yield extracted with same temperature for 12 h was 2.6 times higher than 6 h, but total flavonoid content was 1.1 times higher. These results indicated that total flavonoid content hardly increased with increasing extraction time. Free radical scavenging activity, ROS scavenging activity and cellular protective effects were not dependent on the yield of extraction, but total flavonoid content of extraction. Antibacterial activity on three skin flora (S. aureus, B. subtilis, P. acnes)of sample-1 in different extraction conditions were evaluated on same concentration, and the group extracted at 25 and $40^{\circ}C$ showed 16 times higher than methyl paraben ($2,500{\mu}g/mL$). In conclusion, 85% ethanol extracts of G. uralensis extracted at $40^{\circ}C$ for 6 h showed the highest antioxidant and antibacterial activity. These results indicate that the extraction condition is important to be optimized by comprehensive evaluation of extraction yield with various conditions, yield of active component, and activity test with concentrations, and activity of 100% extract, for manufacturing process of products.