• 제목/요약/키워드: powdered microcapsule

검색결과 2건 처리시간 0.015초

Physicochemical and Sensory Properties of Appenzeller Cheese Supplemented with Powdered Microcapsule of Tomato Extract during Ripening

  • Kwak, Hae-Soo;Chimed, Chogsom;Yoo, Sang-Hun;Chang, Yoon Hyuk
    • 한국축산식품학회지
    • /
    • 제36권2호
    • /
    • pp.244-253
    • /
    • 2016
  • The objective of this study was to determine the physicochemical and sensory properties of Appenzeller cheese supplemented with different concentrations (0, 1, 2, 3, and 4%, w/w) of powdered microcapsules of tomato extracts (PMT) during ripening at 14℃ for 6 mon. The particle sizes of PMT ranged from 1 to 10 m diameter with an average particle size of approximately 2 m. Butyric acid (C4) concentrations of PMT-added Appenzeller cheese were significantly higher than that of the control. Lactic acid bacteria counts in the cheese were not significantly influenced by ripening time from 0 to 6 mon or the concentrations (0-4%, w/w) of PMT. In terms of texture, the hardness of PMT-added Appenzeller cheese was significantly increased compared to the control. The gumminess and chewiness of PMT-added Appenzeller cheese were similar to those of the control. However, both cohesiveness and springiness of PMT-added Appenzeller cheese were slightly decreased. In sensory analysis, bitterness and sourness of Appenzeller cheese were not significantly changed after supplementation of PMT, but sweetness of the cheese was significantly increased after increasing the ripening time from 0 to 6 mon and increasing the concentration from 1 to 4% (w/w). Based on these results, the addition of the concentrations (1-4%, w/w) of PMT to Appenzeller cheese can be used to develop functional Appenzeller cheese.

Properties of Milk Supplemented with Peanut Sprout Extract Microcapsules during Storage

  • Lee, Y.K.;Ganesan, P.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권8호
    • /
    • pp.1197-1204
    • /
    • 2013
  • This study was carried out to investigate the physicochemical and sensory properties of milk with added powdered peanut sprout extract microcapsules (PPSEM) during the storage at $4^{\circ}C$ for 16 d. The size of PPSEM varies from 3 to $10{\mu}m$ as observed by the scanning electron microscopy (SEM). The pH values of all samples ranged from 6.8 to 6.6 during the storage. Release of resveratrol for 0.5 and 1% PPSEM addition was about $0.89{\mu}l/ml$ and TBARS value found to lower during storage of 16 d. The $a^*$ and $b^*$ color values of high concentrations (1.5, 2.0, 2.5 and 3.0%) of PPSEM-added milk samples were significantly increased during the storage (p<0.05). The sensory test revealed that the overall acceptability of PPSEM (0.5 and 1%) added milk sample were quite similar to that of control. Based on the data, it was concluded that the low concentrations of the microcapsules (0.5 and 1.0%, w/v) could be suitable to produce the microcapsule-supplemented milk without significant adverse effects on the physicochemical and sensory properties of milk.