• Title/Summary/Keyword: powder synthesis

Search Result 1,368, Processing Time 0.027 seconds

Comparative Crystal Chemistry of Exchanged by Cs-, Cd-, Pb-, and Sr-synthetic Mordenite Using High Resolution X-ray Powder Diffraction (고분해능 X-선 분말 회절을 이용한 Cs-, Cd-, Pb-, Sr-으로 치환된 합성 모데나이트의 격자상수 비교 연구)

  • Lee, Soojin;Lee, Hyunseung;Seoung, Donghoon;Kim, Pyosang;Kim, Hyeonsu;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.345-353
    • /
    • 2022
  • This study aimed to fundamentally understand changes of cell parameters of cation-exchanged mordenites using high resolution X-ray powder diffraction for studies that immobilization of various heavy metal cation using synthesis mordenite (Na6.6Al6.6Si41.4O96·20.4H2O, Na-MOR). As a results of measurement by Thermogravimetric analysis (TGA), it was confirmed that 19.4, 20.4 water molecules per unit cell were present in monovalent-cation substituted MOR (Cs-MOR, Na-MOR), and 21, 23.1, 23.2 water molecules per unit cell were present in divalent-cation substituted MOR (Pb-MOR, Sr-MOR, Cd-MOR). The space group of all the samples were identified as Cmcm belonging to the orthorhombic crystal system. Compared to Na-MOR, starting material, relative peak intensity of (110) and (200) is significantly changed after cation substitution whereas peak position is almost similar. Also, (220) peak that was not found in Na-MOR was clearly observed in Pb-, Cd- and Sr-exchanged MOR. Thus, it was estimated that changes of atomic distribution usually occurred on ab-plane while changes of cell parameters were little. Detailed changes in the cell parameters of cation-exchanged mordenites were derived from whole profile fitting method using the GSAS suite program. Changes in the axial lengths and unit cell volume of cation substitution showed different relationship depending on ionic radius and charge number. In case of monovalent-cation substituted MOR, the length of a-axis increases whereas the length of b- and c-axis decrease by absorbed cation radius. In the case of divalent-cation exchanged MOR, the length of a-axis usually decreases while the length of b- and c-axis increases by cation radius. It was confirmed that unit cell volume of monovalent and divalent cation substituted MORs had an independent tendency by cation radius.

Synthesis and Rietveld Structure Refinement of Mn-Tourmalines (Tsilaisite) (Mn-전기석(Tsilaisite)의 합성 및 리트벨트 구조분석)

  • Grover John;Choi Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.15-29
    • /
    • 2006
  • Synthetic Mn-tourmalines (tsilaisite) were obtained by hydrothermal synthesis under the condition of 2 Kbar, $375{\sim}700^{\circ}C$, and 50 day-run-time with complete substitution of Mg in dravite by Mn (Mn%=0, 25, 50, 75, and 100%). They are all 6 samples containing Mn-tourmaline with some amounts of albite, spessartine, rhodocrosite, phlogopite etc, showing different synthetic condition of temperature and Mn composition. Synthetic Mn-tourmalines are of site deficiency in X-site ($0.53{\sim}0.68$) more than that of natural ones (approx. $0.2{\sim}0.3$) and show Mn cations occupying Y-site less than expected with initial experiments, leading to failure in synthesis of end-member tsilaisite. Rietveld structural refinements reveal that $R_{wp}$ ($R_{p}/R_{exp}$) is in the range of 13.35 and 18.62%, $R_{B}$ and S (CofF) are $4.85{\sim}6.25%$ (S-18: 8.57%), $1.31{\sim}1.59$ (S-18: 1.81), respectively. Unit cell parameters (space group R3m, z=3) are ${\alpha}=15.8994\;{\AA}$ and $c=7.1846\;{\AA}$ in average (S-18: ${\alpha}=15.9491\;{\AA},\;c=7.1773\;{\AA}$). Average bond lengths of and are $2.67{\sim}2.69\;{\AA}$ (S-18: $2.65\;{\AA}$) and $2.00{\sim}2.02\;{\AA}$ (S-18: $1.96\;{\AA}$), respectively. Ditrigonality (${\delta}$) are in the range of 0.022 and 0.031 (S-18: 0.061), indicating degrading symmetry with increase of Mn content.

Synthesis and Characterization of Soluble Polypyrrole with High Conductivity (높은 전기 전도성을 갖는 가용성 폴리피롤 합성 및 특성)

  • Hong, Jang-Hoo;Jang, Kwan-Sik
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2007
  • Highly conducting Polypyrroles soluble in organic solvents were synthesized using functional doping agents, such as mixed dopants [sodium di(2-ethylhexyl)sulfosuccinate (DEHSNa) Naphthalenesulfonic acid (NSA), DEHSNa Toluenesulfonic acid (TSA), DEHSNa Dodecylbenzensulfonic acid (DBSA)] and mixed oxidants [$(NH_4)_2S_2O_8{\cdot}FeCl_3$, $(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$]. Ppy-DEHS powder using an oxidant, such as $(NH_4)_2S_2O_8$ (10 wt%/vol.) showed higher solubility than the mixed dopant (DEHSNa NSA, 3 wt%/vol.) and mixed oxidant [$(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$, 4 wt%/vol.] in DMF solvent. But Ppy-DEHS free standing film using a mixed dopant, such as DEHSNa NSA (16 S/cm) and a mixed oxidant, such as $(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$ (13 S/cm) cast from DMF solvent showed higher electrical conductivity than $(NH_4)_2S_2O_8$ (2 S/cm). For the Ppy-DEHS films using various condition cast from DMF solvent, three dimensional various range hopping model (3D VRH ; $\{{\sigma}_{dc}(T)={\sigma}_oexp[-(T_o/T)^{1/4}]\}$) provided fit to the results of temperature dependence of electrical conductivity measurement.

A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether (디메틸에테르 초임계 유체를 이용한 고분자량 폴리락티드 스테레오 콤플렉스의 제조)

  • Bibi, Gulnaz;Jung, Youngmee;Lim, Jong Choo;Kim, Soo Hyun
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.453-460
    • /
    • 2015
  • Engineering the polylactide via stereocomplexation with supercritical fluid (SCF) technology paved way to fabricate polymers with enhanced thermal and mechanical properties. We aimed to establish a SCF medium with excellent solubility for PLA without any additional solvent/co-solvent. We, therefore, employed supercritical dimethyl ether to synthesize 100% stereocomplex polylactide from high molecular weight homopolymers with an excellent yield. The remarkable solubility of the homopolymers in dimethyl ether is the key for quick conversion to s-PLA. This study proves a rapid synthesis route of dry s-PLA powder with sc-DME at 250 bar, $70^{\circ}C$ and 1.5 h, which are reasonably achievable processing parameters compared to the conventional methods. The degree of stereocomplexation was evaluated under the effect of pressures, temperatures, times, homopolymer-concentrations and molecular weights. An increment in the degree of stereocomplexation was observed with increased temperature and pressure. Complete conversion to s-PLA was obtained for PLLA and PDLA with $M_n{\sim}200kg{\cdot}mol^{-1}$ with a total homopolymer to total DME ratio of 6:100% w/w at prescribed reaction conditions. The degree of stereocomplexation was determined by DSC and confirmed by XRD. Considerable improvement in thermo-mechanical properties of s-PLA was observed. DSC and TGA analyses proved a $50^{\circ}C$ enhancement in melting transition and a high onset temperature for thermal degradation of s-PLA respectively.

Oxidation behavior of (Mo1-xWx)Si2 high-temperature heating elements (초고온용 발열체 (Mo1-xWx)Si2의 산화거동에 대한 연구)

  • Lee, Sung-Chul;Myung, Jae-ha;Kim, Yong-Nam;Jeon, Minseok;Lee, Dong-won;Oh, Jong-Min;Kim, Bae-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.200-207
    • /
    • 2020
  • MoSi2, (Mo1/2W1/2)Si2, and WSi2 powders were synthesized by self-propagating high-temperature synthesis (SHS) method. The synthesized powders were heat-treated at 500, 1,000, 1,200, 1,300, 1,400, 1,500 and 1,600℃ in ambient atmosphere. Oxidation of Mo-W silicide powder was found at low temperature of 500℃. XRD structure analysis and DTA/TG data showed that MoO3 was formed with 500℃ heat treatment for 1 hour, and that it was α-cristobalite phase that was formed with 1200℃ heat treatment, not α-quartz phase which is commonly found and stable at room temperature. Existence of W accelerated decomposition at both low and high temperature. Fully sintered MoSi2 and (Mo1/2W1/2)Si2 specimen did not show decomposition or weight loss by oxidation, with 1 hour heat treatment at either low or high temperature. Notably, it was difficult to sinter WSi2 because of oxidation reaction at low temperature.

Synthesis and Characterization of Tetradentate N2O2 Schiff Base Ligand and its Rare Earth Metal Complexes (사배위 N2O2 Schiff 염기 리간드와 그 희토류 금속착물의 합성 및 특성)

  • Shelke, Vinod A.;Jadhav, Sarika M.;Shankarwar, Sunil G.;Munde, chut S.;Chondhekar, Trimbak K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.436-443
    • /
    • 2011
  • The solid complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Gd(III) with 4-hydroxy-3-(1-{2-(2,4-dihydroxy-benzylidene)-amino phenylimino}-ethyl)-6-methyl-pyran-2-one ($H_2$L) derived from o-phenylenediamine, 3-acetyl-6-methyl-(2H)pyran,2,4(3H)-dione (dehydroacetic acid or DHA) and 2, 4-dihydroxy benzaldehyde have been synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-visible, FT-IR, $^1H$-NMR, X-ray diffraction, thermal analysis study, and screened for antimicrobial activity. The FT-IR spectral data suggest that the ligand behaves as a dibasic tetradentate ligand with ONNO donor atoms sequence towards central metal ion. From the microanalytical data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand). The physico-chemical data suggests distorted octahedral geometry for La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Gd(III) complexes. The X-ray diffraction data suggests monoclinic crystal system for La(III) and Ce(III) and orthorombic crystal system for Pr(III) and Nd(III) complexes. Thermal behavior (TG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The ligand and its metal complexes were screened for antibacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus Sp. and fungicidal activity against Aspergillus Niger, Trichoderma and Fusarium oxysporum.

Synthesis and Characterization of Some Transition Metal Complexes of Unsymmetrical Tetradentate Schiff Base Ligand (비대칭 Tetradentate Schiff 염기 리간드의 전이금속 착물에 대한 합성 및 특성)

  • Munde, A. S.;Jagdale, A. N.;Jadhav, S. M.;Chondhekar, T. K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • The solid complexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with 4-hydroxy-3-(1-{2-(2-hydroxybenzylidene)- amino phenylimino}-ethyl)-6-methy-pyran-2-one (H2L) derived from o-phenylenediamine, 3-acetyl- 6-methyl-(2H) pyran, 2,4 (3H)-dione (dehydroacetic acid or DHA) and salicylic aldehyde have been synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-visible, IR, $^1H$-NMR spectra, X-ray diffraction, thermal analysis, and screened for antimicrobial activity. The IR spectral data suggest that the ligand behaves as a dibasic tetradentate ligand with ONNO donor atoms sequence towards central metal ion. From the microanalytical data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand). The physico-chemical data suggests square planar geometry for Cu(II) and Ni(II) complexes and octahedral geometry for Co(II), Mn(II) and Fe(III) complexes. The x-ray differaction data suggests orthorhombic crystal system for Cu(II) complex, monoclinic crystal system for Ni(II), Co(II) and Fe(III) and tetragonal crystal system for Mn(II) complex. Thermal behaviour (TG/DTA) of the complexes was studied and kinetic parameters were determined by Coats-Redfern method. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus Niger and Trichoderma.

Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying (기계적합금화에 의한 Fe2O3-Mg계 연자성 콤포지트의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.245-251
    • /
    • 2015
  • We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental $Fe_2O_3$-Mg powders. An optimal milling and heat treatment conditions to obtain soft magnetic ${\alpha}$-Fe/MgO composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that ${\alpha}$-Fe/MgO composite powders in which MgO is dispersed in ${\alpha}$-Fe matrix are obtained by MA of $Fe_2O_3$ with Mg for 30 min. The saturation magnetization of ball-milled powders increases with increasing milling time and reaches to a maximum value of 69.5 emu/g after 5 h MA. The magnetic hardening due to the reduction of the ${\alpha}$-Fe grain size by MA was also observed. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at $800{\sim}1000^{\circ}C$ under 60 MPa. X-ray diffraction result shows that the average grain size of ${\alpha}$-Fe in ${\alpha}$-Fe/MgO nanocomposite sintered at $800^{\circ}C$ is in the range of 110 nm.

Synthesis of SnSb alloys using high energy ball-miiling and its lithium electrochemical behavior (고에너지 볼밀을 이용한 SnSb 합금 분말 제조와 리튬 전기화학적 특성)

  • Kim, Dae Kyung;Lee, Hyukjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.191-198
    • /
    • 2018
  • SnSb alloy powders with excess Sn or Sb are fabricated by the high energy ball-milling of pure Sn and Sb powders with different Sn/Sb molar ratios, and then their material properties and lithium electrochemical performances are investigated. It is revealed by X-ray diffraction that SnSb alloys are successfully synthesized, and the powder size is decreased via ball-milling. Charge-discharge test using a coin-cell shows that the best result, in terms of the cyclability and the capacity after 50 cycles, comes from the electrode composed of Sn : Sb = 4 : 6, i.e. the capacity of $580mAh\;g^{-1}$ after 50 cycles. When the electrode is composed of Sn : Sb = 3 : 7, however, the capacity is noticeably decreased by the restrained Sn reaction with Li-ion. The pure SnSb alloy powders (Sn : Sb = 5 : 5) results in the second best performance. In the case of Sn-rich SnSb alloys, the initial capacity is relatively high, but the capacity is quickly fading after 20 cycles.

Synthesis of CaZrO3 : Eu3+ phosphor by skull melting method (스컬용융법에 의한 CaZrO3 : Eu3+ 형광체 합성)

  • Choi, Hyunmin;Kim, Youngchool;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.131-135
    • /
    • 2020
  • Single crystal phased CaZrO3 : Eu3+ phosphor have been synthesized by skull melting method. The crystal structure, morphology and optical properties of synthesized phosphor were investigated XRD (X-ray diffraction), SEM (scanning electron microscopy), UV (ultraviolet) fluorescence reaction and PL (photo luminescence). The starting materials having chemical composition of CaO: ZrO2 : Eu2O3= 0.962 : 1.013 : 0.025 mol% were charged into a cold crucible. The cold crucible was 120 mm in inner diameter and 150 mm in inner height, and 3 kg of mixed powder (CaO, ZrO2 and Eu2O3) was completely melted within 1 hour at an oscillation frequency of 3.4 MHz, maintained in the molten state for 2 hours, and finally air-cooled. The XRD results show that synthesized phosphor is stabilized in orthorhombic perovskite structure without any impurity phases. The synthesized phosphor could be excited by UV light (254 or 365 nm) and the emission spectra results indicated that bright red luminescence of CaZrO3 : Eu3+ due to magnetic dipole transition 5D07F2 at 615 nm was dominant.