• Title/Summary/Keyword: powder process

Search Result 3,540, Processing Time 0.029 seconds

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

Synthesis and Densification of $Ti_5Si_3$-base Intermetallic Compounds by Reactive Sintering and Electro-Pressure Sintering (반응소결법 및 통전가압소결법에 의한 $Ti_5Si_3$계 금속간화합물의 합성 및 치밀화)

  • 유호준
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.283-290
    • /
    • 1997
  • $Ti_5Si_3$ intermetallics containing 0-6 wt% of Cu were made by reactive sintering (RS) under vacuum using elemental powder mixtures (Process 1), electro-pressure sintering (EPS) using RS'ed materials (Process2), and EPS using elemental powder mixtures (Process 3). Relatively low dense titanium silicides were gained by process 1, in which porosity decreased with increasing Cu content. For example, porosity changed from 42 to 19.4% with the increase in Cu content from 0 to 6 wt%, indicating that Cu is a useful sintering aid. The titanium silicides fabricated by Process 2 had a higher density than those by Process 1 at given composition, and porosity decreased with increasing Cu content. For example, porosity decreased from 38 to 6.8% with the change in Cu content from 0 to 6 wt%. A high dense titanium silicides were obtained by Process 3. In this Process, porosity decreased a little by Cu addition, and was almost insensitive to Cu content. Namely, about 9 or 7% of porosity was shown in 0 or 1-6 wt% Cu containing silicides, respectively. The hardeness increased by Cu addition, and was not changed markedly with Cu content for the silicides fabricated by Process 3. This tendency was considered to be resulted from porosity, hardening of grain interior by Cu addition, and softening of grain boundary by Cu-base segregates. All these results suggested that EPS using elemental powder mixtures (Process 3) is an effective processing method to achieve satisfactorily dense titanium silicides.

  • PDF

Formation of Ti and Ti ceramics composite layer on aluminium alloy (Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화)

  • ;;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF

Effects of β-SiC Particle Seeds on Morphology and Size of High Purity β-SiC Powder Synthesized using Sol-Gel Process (β-SiC 분말 Seeds가 Sol-gel 공정으로 합성된 고순도 β-SiC 분말 형상 및 크기에 미치는 영향)

  • Kim, Gyu-Mi;Cho, Gyoung-Sun;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.528-533
    • /
    • 2009
  • High purity $\beta$-SiC powders were synthesized using sol-gel processing. TEOS and phenol resin were used as the starting material for the silicon source and carbon source, respectively. The process turned out to be capable of producing high purity SiC powder purity degree with 99.98 %. However, it was difficult to control the shape and size of $\beta$-SiC powders synthesized by sol-gel process. In this study, $\beta$-SiC powder with size of $1{\sim}5$ um an 30 nm were used as the seeds for $\beta$-SiC to control the $\beta$-SiC powder morphology. It was found that $\beta$-SiC powder seeds was effective to increase the powder average size of synthesized $\beta$-SiC using sol-gel process by acting as the preferred growing sites for $\beta$-SiC.

Thermoelectric Properties of PbTe Sintered Body Fabricated by Mechanical Alloying Process (기계적합금화 공정에 의해 제조된 PbTe 소결체의 열전특성)

  • 이길근;정해용;이병우
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.110-116
    • /
    • 2001
  • Abstract To investigate the effect of mechanical alloying process to thermoelectric properties of PbTe sintered body, Pb-Te mixed powder with Pb : Te : 1 : 1 composition was mechanically alloyed using tumbler-ball mill. Thermoelectric properties of the sintered body were evaluated by measuring of the Seebeck coefficient and specific electric resistivity from the room temperature to 50$0^{\circ}C$. Sintered body of only mechanically alloyed PbTe powder showed p-type behavior at the room temperature, and occurred type transition from p-type to n-type at about 30$0^{\circ}C$. PbTe sintered body which was fabricated using heat treated powder in $H_2$ atmosphere after mechanical alloying showed stable n-type behavior under 50$0^{\circ}C$. N-type PbTe sintered body fabricated by mechanical alloying process had 4 times higher power factor than that fabricated by the melt-crushing process. Application of a mechanical alloying process to fabricate of n-type PbTe thermoelectric material seemed to be useful to increase the power factor of PbTe sintered body.

  • PDF

In Situ Observations of Sintering Process during Pulsed Current Sintering of $Al_2O_3$, ZnO and WC ALLOY

  • Kawakami, Yuji;Tamai, Fujio;Enjoji, Takashi;Shikatani, Noboru;Misawa, Tatsuya;Otsu, Masaaki;Takashima, Kazuki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.810-811
    • /
    • 2006
  • Pulsed Current Sintering (PCS) process possesses some problems that need to be resolved. We, therefore aims at understanding phenomena of PCS process by presenting some basic data on in situ sintering behavior of PCS. Special graphite mold equipped with thermo couple and electrodes were designed to measure the temperature, electric current and voltage inside the powder during PCS process. We apply three types of raw materials, especially for ZnO as semiconductor, $Al_2O_3$ as non-conductor and WC as good conductor. The electric current and voltage were measured for each powder during PCS process. In addition, their electric resistance properties were calculated.

  • PDF

Fabrication and Properties of High Strength Hypereutectic Al-Si Powder by Gas Atomization Process I. Powder Production and Compressibility (가스분무 공정에 의한 고강도 과공정 Al-Si 합금 분말의 제조 및 특성 연구 I. 분말 제조 및 성형성)

  • Kim Yong-Jin;Kim Jin-Chun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.296-302
    • /
    • 2005
  • In order to improve mechanical properties, the hypereutectic Al-20 wt%Si based prealloy powder was prepared by gas atomization process. Microstructure and compressibility of the atomized Al-Si powder were investigated. The average powder size was decreased with increasing the atomization gas pressure. Size of primary Si particles of the as-atomized powder was about $5-8\;\mu{m}$. The as-atomized Al-Si powder such as AMB 2712 and AMB 7775 to increase compressibility and sinterability. Relative density of the mixed powder samples sintered at $600^{\circ}C$ was reached about 96% of a theoretical density.

Characteristics of Pure Mg Powder Compacts Prepared by Spark Plasma Sintering Process (방전플라즈마 소결법으로 제작된 순 마그네슘 분말 소결체의 특성평가)

  • Hong, Ji-Min;Son, Hyeon-Taek;Chang, Se-Hun;Lee, Jae-Seoul;Cha, Yong-Hun;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.331-336
    • /
    • 2007
  • The pure Mg powder compacts were successfully fabricated using SPS process. The machined chip powder showed flake shaped morphology with coarse surfaces, while gas atomized powders were spherical in morphology with smooth surfaces. In this study, SPS process was used to consolidate the pure Mg powder because this process allows high density consolidation in a short time. The results showed that increased sintering temperature from $350^{\circ}C$ to $500^{\circ}C$ with pressure of 30MPa, the maximum values of the density was increased from 98.1% to 99.8% of theoretical density, respectively. However, density of the sintered chip powders was higher than that of gas-atomized powder due to larger contact areas between particles.

Powder Densification Using Equal Channel Angular Pressing (ECAP 공정을 이용한 분말의 치밀화)

  • Yoon Seung-Chae;Seo Min-Hong;Hong Sun-Ig;Kim Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.124-128
    • /
    • 2006
  • In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

The Changes in Drying Efficiency and Paper Properties of Linerboard by the Application of the Fractions of Wood Powder as a Bulking Agent (목질 벌크향상제 분획별 적용에 따른 라이너지의 건조효율 및 물성변화)

  • Kim, Dong-Seop;Yoon, Do-Hyun;Sung, Yong Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.61-68
    • /
    • 2014
  • The energy efficiency of papermaking process becomes more significant because of various new regulation of the energy consumption and the green house gas emission. In this study, the effects of wood powder addition on the drainage and the drying efficiency of the OCC based paper products, linerboard, were deeply investigated for improving energy efficiency. The fractionation of wood powder depending on the size were conducted. The bigger size of wood powder resulted in the higher bulk and the higher drainage efficiency, but the lower paper strength. The drying efficiency were in detail evaluated depending on the drying process level. In the first section of drying process until the 80% solid level, there were no significant changes in the drying efficiency by the addition of wood powder. However, after the 80 % solid level, the drying efficiency was greatly improved by the addition of wood powder. Those results showed the addition of wood powder could greatly affect not only the drainage in forming and wet pressing but also the drying process.