• Title/Summary/Keyword: powder of waste tire

Search Result 38, Processing Time 0.021 seconds

Studies on Microbial Treatment for Recycling of Waste Tire (폐타이어 재활용을 위한 미생물 처리)

  • Park, Jin-W.;Roh, Hyun-S.;Kim, Jin-K.;Joe, Y.-IL
    • Elastomers and Composites
    • /
    • v.32 no.5
    • /
    • pp.325-329
    • /
    • 1997
  • Microbial treatment of the powdered waste tire was studied to recycle the waste tires. Chemoautotrophic acidophilic, iron-oxidizing bacterium was employed to unvulcanize the powdered tires. Biotreated rubber powder was compared to a untreated and a chemically treated powder. The results showed sulfur content of rubber powder(1.33%) were decreased to 1.22% by chemical treatment and 1.12% by microbial treatment for 20 days, 0.88%, for 30 days. One of the problems of the powdered utilization of the waste tires is that rubber powder leads to decrease mechanical properties when it is compounded with other virgin polymers. When tee biotreated powder was compounded with natural rubber, the mechanical properties were less decreased when untreated or chemically treated powder. Therefore, the microbial treatment can be one of useful methods to recycle the waste tire.

  • PDF

Characterization of Thermo-Plastic Vulcanized (TPV) Composite Prepared by the Waste Tire and Plastic Powder (폐타이어 분말과 재생PP로 제조한 열가소성 고무 플라스틱(TPV)의 물성평가)

  • An, Ju-Young;Park, Jong-Moon;Bang, DaeSuk;Kim, Bong-Suk;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.30-36
    • /
    • 2014
  • 300,000 tons of waste tires are annually being produced with development of the automotive industry in Korea. Landfill and incineration treatment system are causing the economic problem through secondary environmental pollution and waste. Therefore, as one of the ways to take advantage of this, Thermo-Plastic Vulcanized (TPV) composite was prepared by the ground waste tire and plastic powders. The waste tire powder was gained by mechanical fracturing through crushers. The waste tire powder was ground by a shear crushing method and a 2-stage disk mill method instead of cutting crushing one. The waste tire powder of 50 mesh was mixed with Polypropylene(PP) in various proportions. TPVs were prepared by an extrusion, and tensile and impact tests were performed. In addition, the same experiments were repeated in 40, 80, 140 mesh conditions in order to observe size effect of waste tire powders.

Preparation and Characterization of Polypropylene/Waste Ground Rubber Tire Powder Microcellular Composites by Supercritical Carbon Dioxide

  • Zhang, Zhen Xiu;Lee, Sung-Hyo;Kim, Jin-Kuk;Zhang, Shu Ling;Xin, Zhen Xiang
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.404-410
    • /
    • 2008
  • In order to obtain 'value added products' from polypropylene (PP)/waste ground rubber tire powder (WGRT) composites, PP/WGRT microcellular foams were prepared via supercritical carbon dioxide. The effects of blend composition and processing condition on the cell size, cell density and relative density of PP/WGRT micro-cellular composites were studied. The results indicated that the microcellular structure was dependent on blend composition and processing condition. An increased content of waste ground rubber tire powder (WGRT) and maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS-g-MA) reduced the cell size, and raised the cell density and relative density, whereas a higher saturation pressure increased the cell size, and reduced the cell density and relative density. With increasing saturation temperature, the cell size increased and the relative density decreased, whereas the cell density initially increased and then decreased.

A Study on Recycling Technology of Waste Tire Powder by Particle Size Distribution Analysis (입도분포해석에 의한 폐타이어 분말의 재활용 연구)

  • Hwang, Sung-Hyuk;Jung, Jae-Hum;Pack, So-Yoon;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.128-138
    • /
    • 2003
  • It goes to be serious with environmental pollution because of great number of waste tires scrapped each you. That is why there are lots of studies for efficient recycle. We tried to reduce particle size of the waste tire powder using a new technology of self-designed grinding machine (SDGM) and ultrasonic treatment. The purpose of this study is to improve the physical properties of reduced waste tire powder. We investigated the fine powder by particle size distribution(PSD) analysis. And also we examined the physical and mechanical properties and cross-link density at various particle sire. Also we carried out morphological studies after making the products by SEM.

Characteristics Studies of Waste Tire Rubber Powders using the Different Grinding Methods (분쇄 방식에 따른 폐타이어 고무분말의 특성 연구)

  • Park, Jong-Moon;An, Ju-Young;Bang, Daesuk;Kim, Bong-Seok;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.44-50
    • /
    • 2014
  • In this study, a method of shear crushing and a two-stage disk mill were introduced to grind the waste tire powder. Rubber chips with various size were obtained during the crushing or grinding step. The two-stage disk mill was composed of two drum-type blades rotating at various speed and in opposite directions. Therefore, more roughly surfaced particles of micronized waste tire powder were obtained using shear crushing rather than using conventional cutting crushing. In this study, the shape of shear-crushed waste tire particles was compared with conventional cutting crushing particles by scanning electron microscope. In addition, the particle size analyzer was employed to determine the appropriate particle size of waste ground tire powders obtained in this study.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Development of Powder Utilization of Waste Rubber

  • Kim, Jin-Kuk;Lee, Sung-Hyo;Hwang, Sung-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.220-224
    • /
    • 2001
  • Waste tires are a significant problem with the increasing in number of automobiles. Therefore, many researches have been studied on this field. Recycling is the one of the popular method aspect to environmental and economical in the treatment methods of the waste tire, which loads that the reuse of scrap tire rubber has been a challenge in the past. However, it is not easy method to melt down and mold into new products because the in rubber is a cross-linked polymer. Most difficulty in recycling is the recycled product is not economic. Therefore, the goal of this study is to develop the high valuable products for reused waste tires. In this paper, we try to make an economic recycled technology using scrapped waste tires. This technology may applied for manufacturing the end products such as a rubber block and a ballast mat for high-speed train.

  • PDF

Mechanical Properties of Polyethylene/Polypropylene/Waste Tire Rubber Powder Composites (폴리에틸렌/폴리프로필렌/폐타이어고무분말 복합체의 기계적 특성)

  • Choi, Jeong-Su;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.318-323
    • /
    • 2011
  • To recycle the waste tire rubber powder, rubber powder composite for waterproof sheet was prepared, and analyzed the effect of the kind of resin and the amount of crosslinking agent on the mechanical property of the composites. The elongation-at-break of the PE composite increased more than 3 times as EPDM was added into rubber composites. As the content of the crosslinking agent increased, the tensile strength of composite increased as well. When recycled polypropylene was used, the increase in composite's tensile strength was more than 3 times. Therefore to use the recycled PP in composite is more effective rather than PP in term mechanical properties.