• Title/Summary/Keyword: powder method

Search Result 3,651, Processing Time 0.029 seconds

The Preparation of Bi-2223 Superconducting Powder and Tape by Emulsion Drying Method (에멀젼 건조법에 의한 Bi-2223 초전도 분말과 테이프 제조)

  • 장중철;이응상;이희균;홍계원
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • The powder preparation by using emulsion drying method, one of the chemical powder fabrication methods has the advantages; easy to control the chemical stoichiometry and to fabricate homogeneously fine particles. In the present study, the initial morphology and size distribution of the powder fabricated by using emulsion dry-ing method were controlled and were improved the homogeneity. By carefully controlling the mixing ratio of oil phase and aqueous solution and surfactant of preventing emulsion separation, the Bi(Pb)-Sr-Ca-Cu-O su-perconducting powders were prepared. The properties of the superconducting powder fabricated by this method and the microstructures and superconducting properties of the pelletized samples were investigated. The microstructures and electric properties of the tapes prepared by oxide powder-in-tube method were in-vestigated. The fabricated powder was spherical with less than 1$\mu$m but most of them was agglomerated with 2~5$\mu$m in size. The critical temperature of the pelletized sample annealed at 84$0^{\circ}C$ for 72 hours in oxygen par-tial pressure of 1/13atm in Ar atmosphere was 108K. And the critical current of the first and second annealed tapes in air prepared by oxide powder-in-tube process were 0.4A and 1.5A, respectively.

  • PDF

Investigation on the Thermoelectric Properties of Bismuth Telluride Matrix Composites by Addition of Graphene Oxide Powders (그래핀 산화물 분말 첨가에 의한 비스무스 텔루라이드 기지 복합재료의 열전에너지변환 특성 고찰)

  • Kim, Kyung Tae;Min, Taesik;Kim, Dong Won
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.263-269
    • /
    • 2016
  • Graphene oxide (GO) powder processed by Hummer's method is mixed with p-type $Bi_2Te_3$ based thermoelectric materials by a high-energy ball milling process. The synthesized GO-dispersed p-type $Bi_2Te_3$ composite powder has a composition of $Bi_{0.5}Sb_{1.5}Te_3$ (BSbT), and the powder is consolidated into composites with different contents of GO powder by using the spark plasma sintering (SPS) process. It is found that the addition of GO powder significantly decreases the thermal conductivity of the pure BSbT material through active phonon scattering at the newly formed interfaces. In addition, the electrical properties of the GO/BSbT composites are degraded by the addition of GO powder except in the case of the 0.1 wt% GO/BSbT composite. It is found that defects on the surface of GO powder hinder the electrical transport properties. As a result, the maximum thermoelectric performance (ZT value of 0.91) is achieved from the 0.1% GO/BSbT composite at 398 K. These results indicate that introducing GO powder into thermoelectric materials is a promising method to achieve enhanced thermoelectric performance due to the reduction in thermal conductivity.

Review on Characterization Method and Recent Research Trend about Metal Powder for Powder Bed Fusion (PBF) Process (금속 Powder Bed Fusion(PBF) 공정용 분말의 특성평가 방법 및 관련 연구 동향)

  • Lee, Bin;Kim, Dae-Kyeom;Kim, Young Il;Kim, Do Hoon;Son, Yong;Park, Kyoung-Tae;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.509-519
    • /
    • 2020
  • A well-established characterization method is required in powder bed fusion (PBF) metal additive manufacturing, where metal powder is used. The characterization methods from the traditional powder metallurgy process are still being used. However, it is necessary to develop advanced methods of property evaluation with the advances in additive manufacturing technology. In this article, the characterization methods of powders for metal PBF are reviewed, and the recent research trends are introduced. Standardization status and specifications for metal powder for the PBF process which published by the ISO, ASTM, and MPIF are also covered. The establishment of powder characterization methods are expected to contribute to the metal powder industry and the advancement of additive manufacturing technology through the creation of related databases.

Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures (나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성)

  • Lee, Wha-Jun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating (플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동)

  • Kang, Sang-Woon;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.229-234
    • /
    • 2016
  • In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.

Method and mechanism of dispersing agent free dispersion of short carbon fibers in silicon carbide powder

  • Raunija, Thakur Sudesh Kumar;Mathew, Mariamma;Sharma, Sharad Chandra
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.180-186
    • /
    • 2014
  • This study highlights a novel method and mechanism for the rapid and effective milling of carbon fibers (CFs) in silicon carbide (SiC) powder, and also the dispersion of CFs in SiC powder. The composite powders were prepared by chopping and exfoliation of CFs, and ball milling of CFs and SiC powder in isopropyl alcohol. A wide range of CFs loading, from 10 to 50 vol%, was studied. The milling of CFs and SiC powder was checked by measuring the average particle size of the composite powders. The dispersivity of CFs in SiC powder was checked through scanning electron microscope. The results show that the usage of exfoliated CF tows resulted in a rapid and effective milling of CFs and SiC powder. The results further show an excellent dispersion of CFs in SiC powder for all CFs loading without any dispersing agent.

Synthesis of Nickel and Copper Nanopowders by Plasma Arc Evaporation

  • Cho, Young-Sang;Moon, Jong Woo;Chung, Kook Chae;Lee, Jung-Goo
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.411-424
    • /
    • 2013
  • In this study, the synthesis of nickel nanoparticles and copper nanospheres for the potential applications of MLCC electrode materials has been studied by plasma arc evaporation method. The change in the broad distribution of the size of nickel and copper nanopowders is successfully controlled by manifesting proper mixture of gas ambiance for plasma generation in the size range of 20 to 200 nm in diameter. The factors affecting the mean diameter of the nanopowder was studied by changing the composition of reactive gases, indicating that nitrogen enhances the formation of larger particles compared to hydrogen gas. The morphologies and particle sizes of the metal nanoparticles were observed by SEM, and ultrathin oxide layers on the powder surface generated during passivation step have been confirmed using TEM. The metallic FCC structure of the nanoparticles was confirmed using powder X-ray diffraction method.

Development of Spherical Fine Powders by High-pressure Water Atomization Using Swirl Water Jet (II)

  • Terai, Shinji;Kikukawa, Masato;Inaba, Tsuneta;Koyama, Tadashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.16-17
    • /
    • 2006
  • In order to obtain spherical fine powder, we have developed a new method of high-pressure water atomization system using swirl water jet with the swirl angle $(\omega)$. The effect of nozzle apex angle $(\theta)$ upon the morphology of atomized powders was investigated. Molten copper was atomized by this method, with $\omega=0.2$ rad (swirl water jet) and $\omega=0$ rad (conical water jet). It was found that the median diameter $(D_{50})$ of atomized powders decreased with decreasing $(\theta)$ down to 0.35 rad in each $\omega$, but under ${\theta}<\;0.35$ rad, $D_{50}$ increased abruptly with decreasing $\theta$ for $\omega=0$ rad, while it was still decreased with decreasing $(\theta)$ for $\omega=0.2$ rad.

  • PDF

Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser (저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

Optical Properties of Spherical YAG:Ce3+ Phosphor Powders Synthesized by Atmospheric Plasma Spraying Method Appling PVA Solution Route and Domestic Aluminium Oxide Seed (PVA 용액법과 국산 산화알루미늄을 적용하여 대기 플라즈마 용사법으로 합성된 구형의 YAG:Ce3+ 형광체의 발광특성)

  • Yong-Hyeon Kim;Sang-Jin Lee
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.424-430
    • /
    • 2023
  • YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle size of approx imately 30 ㎛. As a result of the PKG test of the YAG phosphor powder, the synthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.