• Title/Summary/Keyword: powder insulation

Search Result 92, Processing Time 0.023 seconds

Thermal Analysis on the LNG Storage Tank of LNG Bunkering System Applied with Double Shield Insulation Method (LNG 벙커링용 이중 단열적용 LNG 저장탱크 열해석)

  • Jung, Il-Young;Kim, Nam-Guk;Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • An LNG bunkering system stores LNG in a horizontal IMO's C-Type tank insulated with perlite powder, and $10^{-2}$ Torr vacuum in the annular space between the double walls. Current storage tanks have high heat leakage, evaporating over 2.0% daily. A more efficiently insulated storage tank reducing the evaporation rate is required to develope. This research carried out thermal analysis on a new effective insulation method, i.e. double shield insulation system, that separates high super vacuum in the annular space between two tanks with a perlite vacuum in the back side of outer tank. This highly efficient insulation system obtained an evaporation rate of 0.16% per day under a $10^{-4}$ Torr vacuum. Even if the space loses its vacuum, the new insulation system showed a lower evaporation rate of 5.23% than the present perlite system of 4.9%.

Flame Retardancy & Mechanical Properties of Mixed Waste $Plastic/Mg(OH)_{2}$ Composites Reinforced with PUB Powder (PUB 분말이 충전된 혼합폐플라스틱/$Mg(OH)_{2}$ 복합소재의 난연성 및 기계적 특성)

  • Jung, Ki-Chang;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.65-71
    • /
    • 2006
  • Flame retardancy and mechanical properties of polyolefinic mixed waste plastics/filler composites were investigated by using inorganic flame retardant(magnesium hydroxide) and PUB(polyurethane block) powder generated from cryogenic insulation process. All composites were obtained by extrusion and after compression molding. The effect of PUB powder on the properties of the composites was studied by tensile and izod impact test, morphology studies and flammability as LOI and UL94 vertical burning test and smoke density. The objective of this work is to obtain good mechanical properties from recycled PP composites with $Mg(OH)_{2}/PUB$ powder as fillers and optimum cost-performance balance, in addition to flame retardant characteristics.

Development of Hybrid Insulating Coating for Fe-based Soft Magnetic Powder (철계 연자성 분말용 하이브리드 절연 코팅막 개발)

  • Kim, Jungjoon;Kim, Sungyeom;Kim, Youngkyun;Jang, Taesuk;Kim, Hwi-jun;Kim, Youngjin;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.233-238
    • /
    • 2021
  • Iron-based amorphous powder attracts increasing attention because of its excellent soft magnetic properties and low iron loss at high frequencies. The development of an insulating layer on the surface of the amorphous soft magnetic powder is important for minimizing the eddy current loss and enhancing the energy efficiency of high-frequency devices by further increasing the electrical resistivity of the cores. In this study, a hybrid insulating coating layer is investigated to compensate for the limitations of monolithic organic or inorganic coating layers. Fe2O3 nanoparticles are added to the flexible silicon-based epoxy layer to prevent magnetic dilution; in addition TiO2 nanoparticles are added to enhance the mechanical durability of the coating layer. In the hybrid coating layer with optimal composition, the decrease in magnetic permeability and saturation magnetization is suppressed.

Fabrication of 3D Aligned h-BN based Polymer Composites with Enhanced Mechanical Properties for Battery Housing (3차원으로 정렬된 h-BN을 이용한 향상된 기계적 특성을 가지는 배터리 하우징용 고분자 복합소재 제작)

  • Kiho Song;Hyunseung Song;Sang In Lee;Changui Ahn
    • Journal of Powder Materials
    • /
    • v.31 no.4
    • /
    • pp.329-335
    • /
    • 2024
  • As the demand for electric vehicles increases, the stability of batteries has become one of the most significant issues. The battery housing, which protects the battery from external stimuli such as vibration, shock, and heat, is the crucial element in resolving safety problems. Conventional metal battery housings are being converted into polymer composites due to their lightweight and improved corrosion resistance to moisture. The transition to polymer composites requires high mechanical strength, electrical insulation, and thermal stability. In this paper, we proposes a high-strength nanocomposite made by infiltrating epoxy into a 3D aligned h-BN structure. The developed 3D aligned h-BN/epoxy composite not only exhibits a high compressive strength (108 MPa) but also demonstrates excellent electrical insulation and thermal stability, with a stable electrical resistivity at 200 ℃ and a low thermal expansion coefficient (11.46×ppm/℃), respectively.

Utilizability of Shell Powder as Wall Coatings for Thin Textured Finishes (건축용 벽 바름재로서 패각분말의 활용성 연구)

  • Jeon, Ji-Hyeon;Kook, Chan
    • KIEAE Journal
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • 0.4 Million tons of shell powder have been disused as waste in KOREA and caused severe environmental pollution though shell powder can be utilized in real life for many ways. It is impending problem to recycle shell powder as it requires high expense for burying and temporary outside heap and causes severe environmental pollution being a main factor of ocean waste. To suggest the basic data for development of eco-friendly and high-function Wall Coatings Thin Textured Finishes, a wall coating sample was applied to indoor walls of a mock-up and temperature and humidity were measured to assess the thermal performance of it, and a survey of preference for the color sense and feel of the materials with a movie of specimens. The results of the study are following; 1) High insulation performance is shown from the assessment result of the room polystyrene board adhered on the walls then high humidity controlling performance is shown from that of the room polystyrene board coated by shell powder. This point out that shell powder has superiority for humidity controlling. 2) The result of thermal and humidity assessment shows that shell powder makes up for thermal conduction of the polystyrene board and same result can be expected from the assessment with materials which has similar thermal characteristics with polystyrene.3) Ranking of preferred specimens is; 1st Case 13, 2nd Case 17, 3rd Case 16, and 4th Case 12. Preferred shell powder was the ark shell. Preferred powder for plaster was the powder mixed with that sifted by 0.8mm, 100mesh and 40mesh, and for spray was the fine powder mixed with that sifted by 100mesh and 40mesh.

A Study on the Effect of Admixture Types and Replacement Ratio on Hydration Heat Reduction of High-Strength Concrete (고강도 콘크리트의 수화열 저감에 미치는 혼화재 종류 및 대체율의 영향에 관한 연구)

  • Kim, Moo-Han;Choi, Se-Jin;Oh, Si-Duk;Kim, Yong-Ro;Lee, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.145-150
    • /
    • 2002
  • The hydration of cement paste occurs when the cement is miked with water. During the hydration, hydration heat causes the thermal stress depending on the site of concrete and the cement content. Especially in the high-strength concrete, we must give care to the concrete due to its large cement content. In this study conduction calorimeter and concrete insulation hydration heat meter were used to investigation the hydration heat characteristics of cement and concrete. To reduce hydration heat of high-strength concrete, several types of replacement of fly-ash and blast-furnace slag powder were used in this experiment. As a result of this study, it was found that hydration heat of high-strength concrete was reduced by replacement of fly-ash and blast-furnace slag powder. In case of high-strength concrete using blast-furnace slag powder, the max-heat arrival time was delayed but an effect of heat reduction was lower than a case of high-strength concrete using fly-ash, because it was considered that the heat-dependence property of blast-furnace slag powder was higher than that of fly-ash.

Study on the characteristics of perlite insulation for the storage tank in LNG carrier (LNG선박 화물창의 펄라이트 단열재 적용성에 관한 설계 특성 연구)

  • Yun, Sangkook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.843-848
    • /
    • 2013
  • As the LNG demands are growing, the constructions of LNG FPSO (Floating Production Storage and Off-loading) and LNG carriers have been constantly increased, and the various design of storage tank has been tried. This paper propose that the material of inner storage tanks is made of 5~9% Ni steel plate and perlite powder insulation instead of urethane foam block. It needs essentially to obtain the proper design specifications that are the pressure of perlite, the characteristics of resilient blanket as the pressure absorber, optimum thickness of blanket and design pressure of tank wall, etc. to enable the perlite insulation system to LNG carrier, The results show that the design thickness of blanket should be between 1/4 to 1/3 of insulation width and the optimum rate becomes 30%, and the design pressure be applied below 1,500 Pa with blanket thickness.

Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board (Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성)

  • 김일수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

Design Characteristics of Resilient Blanket as Pressure Absorber in the Insulation Annulus of LNG Tank (LNG내외탱크 사이의 압력흡수용 탄성 Blanket 설계 특성)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.77-82
    • /
    • 2013
  • The construction of LNG storage tanks has been increased due to the expansion of LNG demand. LNG tanks which consist of an inner cylindrical 9%Ni metal tank and reinforced concrete, are insulated with perlite powder and resilient blanket for absorbing the perlite pressure in insulation annulus between two inner and outer tanks. This study tries to find out the design specifications and characteristics for blanket thickness and design pressure. The results show that the design basis for the blanket thickness should be approximately 30% to 40% of annulus width and the design pressure be applied below 2,200~2,700Pa with blanket thickness.

Effect of Ceramic Powder Content and Shape on the Electrical Properties of Ceramic(BaTiO3)-polymer(Epoxy) Composite for Embedded Capacitors (임베디드 커패시터용 세라믹(BaTiO3)-고분자(에폭시) 필름의 세라믹 분말 형상 및 함량에 따른 전기적 특성)

  • Han, Jeong-Woo;Yoon, Jung-Rag;Je, Hae-June;Lee, Dong-Ho;Lee, Kyung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.495-500
    • /
    • 2009
  • The ceramic($BaTiO_3$)-polymer(epoxy) composites have been widely investigated as dielectric materials for embedded capacitors in printed circuit boards (PCBs). The dielectric properties of $BaTiO_3$/epoxy composites prepared using the agglomerated $BaTiO_3$ particles were investigated in the present study. The dielectric constants of the composites prepared using the agglomerated $BaTiO_3$ particles were about 2 times higher than those of the composites with the dispersed $BaTiO_3$ particles. The insulation resistance of the composites prepared using the agglomerated $BaTiO_3$ particles were lower than those of the composites with dispersed $BaTiO_3$ particles. As a result, there is tradeoff between high dielectric constant and insulation resistance in the $BaTiO_3$/epoxy composites. So it is important to select proper agglomerated or dispersed $BaTiO_3$ particles in accordance with needs.