• 제목/요약/키워드: powder X-ray diffraction

검색결과 1,014건 처리시간 0.031초

충격압분공정으로 제조된 나노 니켈/알루미늄 혼합분말재의 특성 평가 (Evaluation of the Reactivity of Bulk Nano Ni/Al Powder Manufactured by Shock Compaction Process)

  • 김우열;안동현;박이주;김형섭
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.216-221
    • /
    • 2017
  • Recently, interest in multifunctional energetic structural materials (MESMs) has grown due to their multifunctional potential, especially in military applications. However, there are few studies about extrinsic factors that govern the reactivity of MESMs. In this paper, a shock compaction process was performed on the nano Ni/Al-mixed powder to investigate the effect of particle size on the shock reaction condition. Additionally, heating the statically compacted specimen was also performed to compare the mechanical properties and microstructure between reacted and unreacted material. The results show that the agglomerated structure of nanopowders interrupts the reaction by reducing the elemental boundary. X-ray diffraction analysis shows that the NiAl and $Ni_3Al$ intermetallics are formed on the reacted specimen. The microhardness results show that the $Ni_3Al$ phase has a higher hardness than NiAl, but the portion of $Ni_3Al$ in the reacted specimen is minor. In conclusion, using Ni/Al composites as a reactive material should focus on energetic use.

X선 회절법에 의한 할로겐화 은 유제입자의 크리스탈라이트 크기 측정과 결정결함 평가에 관한 연구 (Measurement of Crystallite Size of Method and Evaluation of Crystal Defects)

  • 배창환;이주희;한창석
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.330-336
    • /
    • 2009
  • The size of crystallites in mono-dispersed cubic silver bromide grains was measured by applying a powder X-ray diffraction method and Scherrer's equation to grains that were suspended in swollen gelatin layers. In order to evaluate the existence of defects, the measured crystallite size was compared to those measured by using a scanning electron microscope. In the case of the grains prepared by the controlled double jet method, the size of crystallites was equal to the edge length of the grains that had edge lengths smaller than 400 nm. This result proved the usefulness of the above-stated method for measuring the size of crystallites and also evaluating the presence of any crystal defect in each grain. In the case of the grains, which were precipitated in the presence of a sensitizing dye and potassium iodide, the size of crystallites was smaller than the edge's length, indicating the discontinuities in the grains introduced during the precipitation process.

Ni-B 분말의 기계적 합금화 과정에서 밀링시간에 따른 미세조직과 상변화 거동 (Effect of Milling Time on the Microstructure and Phase Transformation Behaviors of Ni-B Powder During Mechanical Alloying Process)

  • 김정근;이욱진;박성균;박익민;박용호
    • 한국분말재료학회지
    • /
    • 제18권6호
    • /
    • pp.496-501
    • /
    • 2011
  • In this study, the effect of milling time on the microstructure and phase transformation behaviors of Ni-12 wt.%B powders was investigated using vibratory ball milling process. X-ray diffraction patterns showed that the phase transformation of mixed Ni-B elemental powder occurred after 50 hours of milling, with a formation of nickel boride phases. Through the study of microstructures in mechanical alloying process, it was considered that ball milling strongly accelerates solid-state diffusions of the Ni and B atoms during mechanical alloying process. The results of X-ray photoelectron spectroscopy showed that most of B atoms in the powder were linked to Ni with a formation of nickel boride phases after 200 hours of milling. It was finally concluded that mechanical alloying using ball milling process is feasible to synthesize fine and uniform nickel boride powders.

W-WC의 Spark Plasma Sintering에 의한 W2C의 합성 및 식각특성 (Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property)

  • 오규상;이성민;류성수
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.293-299
    • /
    • 2020
  • W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 ㎛ and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.

Sol-gel 합성에 의한 자성 garnet $Y_{3-x}Bi_xFe_5O_{12}$의 결정학적 및 Mossbauer 분광학 연구 (Crystallographic and Mossbauer Studies of Magnetic Garnet $Y_{3-x}Bi_xFe_5O_{12}$ by a Sol-Gel Method)

  • 엄영란;김철성;이재광
    • 한국자기학회지
    • /
    • 제8권4호
    • /
    • pp.203-209
    • /
    • 1998
  • Single phase garmet Y3-xBixFe5O12(x=0.0, 0.25, 0.5, 0.75, 1.0)을 ethylene glycol을 용매로 하여 sol-gel 법으로 합성후 x-ray diffraction, Mossbauer 분광기, vibrating sample magnetometer (VSM)를 이용하여 결정학적 및 자기적 특성을 연구하였다. Y과 Fe의 수화 반응을 통하여 얻은 Y3Fe5O12의 x-ray 회절 분석 결과는 결정구조가 cubic임을 알 수 있었고 Y에 Bi를 치환한 경우 또한 cubic 구조이었으며 Bi의 치환 량이 증가할수록 격자 상수가 선형적으로 증가함을 알수 있었다. Bi를 첨가한 Y3-xBixFe5O12 (x=0.0, 0.25, 0.5, 0.75, 1.0)의 단일상의 garnet이 형성되기 시작하는 온도는 80$0^{\circ}C$이고 secound phase (BiFeO3)가 생성되기 시작하는 온도는 x=0.75는 100$0^{\circ}C$이며 x-1.0은 95$0^{\circ}C$였다. Mossbauer 분광 실험과 VSM측정 결과 Birk 치환 될수록 포화 자화 값과 coercivity값이 감소하는 경향을 보였으며 Curic 온도는 Bi의 치환 양이 증가할수록 약간 증가하는 경향을 보임을 알 수 있었다.

  • PDF

Synthesis, Structures and Properties of Three Metal-organic Frameworks Based on 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic Acid

  • Liang, Peng;Ren, Tian-Tian;Tian, Wei-Man;Xu, Wen-Jia;Pan, Gang-Hong;Yin, Xian-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.182-188
    • /
    • 2014
  • Three new transition metal complexes based on Ozagrel $[Cu(Ozagrel)]_n$ (1), $[Zn(Ozagrel)(Cl)]_n$ (2), ${[Mn_2-(Ozagrel)(1,4-ndc)_2]{\cdot}(H_2O)}_n$ (3), (Ozagrel = 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic acid; 1,4-ndc = 1,4-Naphthalenedicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyse, IR, TG, PXRD, electrochemical analysis and single crystal X-ray diffraction. X-ray structure analysis reveals that 1 and 3 are 3D coordination polymers, while complex 2 is a two-dimensional network polymer, the 2D layers are further packed into 3D supramolecular architectures that are connected through hydrogen bonds. The electrochemistry of 1-3 was studied by cyclic voltammetry in methanol and water using a glassy carbon working electrode. Also, thermal decomposition process and powder X-ray diffraction of complexes were investigated.

X-ray 회절의 반치전폭(FWHM)을 이용한 Y-TZP세라믹스에서 반복 열응력에 의한 입계크기 분석 (Grain Size Analysis by Hot-Cooling Cycle Thermal Stress at Y-TZP Ceramics using Full Width at Half Maximum(FWHM) of X-ray Diffraction)

  • 최진삼;박규열;공영민
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.264-270
    • /
    • 2019
  • As a case study on aspect ratio behavior, Kaolin, zeolite, $TiO_2$, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ${\sim}6{\mu}m$ are shifted to submicron size, D50 ${\sim}0.6{\mu}m$, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Synthesis and Characterization of Tungsten Trioxide Films Prepared by a Sol-Gel Method for Electrochromic Applications

  • Kim, Tae-Ho;Nah, Yoon-Chae
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.309-314
    • /
    • 2015
  • Tungsten trioxide thin films are successfully synthesized by a sol-gel method using tungsten hexachloride as precursors. The structural, chemical, and optical properties of the prepared films are characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry. The electrochemical and electrochromic properties of the films before and after heat treatment are also investigated by cyclic voltammetry, chronoamperometry, and in situ transmittance measurement system. Compared to as-prepared films, heat-treated tungsten trioxide thin films exhibit a higher electrochemical reversibility of 0.81 and superior coloration efficiency of $65.7cm^2/C$, which implies that heat treatment at an appropriate temperature is a crucial process in a sol-gel method for having a better electrochromic performance.

Crystal Forms of Ketorolac

  • Sohn, Young-Taek;Seo, Hyun-Ok
    • Archives of Pharmacal Research
    • /
    • 제27권3호
    • /
    • pp.357-360
    • /
    • 2004
  • Four crystal forms of ketorolac have been obtained by recrystallization in organic solvents under variable conditions. Different ketorolac polymorphs and pseudo polymorph were characterized by X-ray powder diffraction crystallography (XRD), Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In the dissolution studies in water at $37{\pm}0.5^{\circ}C$ four crystal forms showed different patterns. The solubility of Form I were the highest. The solubility decreased in rank order: Form I> Form II > Form III > Form IV. Form land Form III were shown to have a good physical stability at room temperature for 60 days. However, Form II is converted to Form III and Form IV is converted to Form I after 60 days storage. Therefore, these observations indicate that crystalline polymorphism for ketorolac is readily inter-convertible and the relationship may have to taken into consideration in the formulation of the drug.

공기 중 대기압 분위기에서 Zn의 산화에 의해 생성된 Tetrapod와 Multipod 형태의 나노구조와 음극선 발광 특성 (Synthesis and Cathodoluminescence of Tetrapod and Multipod-shaped ZnO Nanostructures by Oxidation of Zn in Air Atmosphere)

  • 이근형
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.256-260
    • /
    • 2011
  • ZnO nanostructures with tetrapod, needle and multipod shapes were synthesized without catalysts through a simple thermal oxidation of metallic Zn powder in alumina crucible under air atmosphere. X-ray diffraction data revealed that the ZnO nanostructures had wurtzite structure of hexagonal phase. Energy dispersive X-ray (EDX) spectra showed that the ZnO was of high purity. After the oxidation of Zn powder, white colored product was mainly observed and yellow colored product was observed only a very little on the surface of the oxidized source materials. The white product consisted of tetrapods, while yellow product was composed of needles and multipods. Cathodoluminescece spectra showed that the crystalline quality of tetrapods was better that those of needles and multipods.