• Title/Summary/Keyword: potting

Search Result 77, Processing Time 0.028 seconds

Plant Regeneration from Mesophyll Protoplasts of Dianthus superbus (술패랭이꽃(Dianthus superbus)의 엽육원형질체로부터 식물체 재분화)

  • Lee, Eun-Ae;Kim, Joon-Chul;Kim, Won-Bae
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.1
    • /
    • pp.41-46
    • /
    • 1995
  • Leaf mesophyll protoplasts of Dianthus superbus were cultured in MSP1 liquid medium supplemented with 0.5 mg/L BAP, 2.0 mg/L NAA and 9% mannitol. Protoplast-derived colonies were formed after 3 to 4 weeks of culture in the dark at 27$^{\circ}C$. These colonies were kept under continuous illumination (21.5 $\mu$E. m-2 sec-1) for 2 weeks and finally most of the colonies became green microcalli, about 3 mm in diameter. When green microcalli were transferred to MS solidified medium with 2.0 mg/L 2,4-D, they formed embryogenic calli after 4 week of culture. These calli were then transferred onto $N_{6}$ medium containing 0.1mg/L 2,4-D, 0.1 mg/L NAA, 2.0 mg/L kinetin and 2.0 g/L casein hydrolysate and cultured under illumination. After 5 weeks of culture the calli gave rise to multiple shoots of 10 to 15 per callus. Upon transfer onto MS medium containing 2.0 mg/L NAA, they were noted. The regenerates were successfully transplanted into potting soil.

  • PDF

High frequency plant regeneration system for Nymphoides coreana via somatic embryogenesis from zygotic embryo-derived embryogenic cell suspension cultures

  • Oh, Myung-Jin;Na, Hye-Ryun;Choi, Hong-Keun;Liu, Jang Ryol;Kim, Suk-Weon
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.125-128
    • /
    • 2010
  • Culture conditions were established for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Nymphoides coreana. Zygotic embryos formed pale-yellow globular structures and calluses at a frequency of 85.6% when cultured on half-strength Murashige and Skoog (MS) medium supplemented with 0.3 $mg\;l^{-1}$ of 2,4-D. However, the frequency of pale-yellow globular structures and white callus formation decreased slightly with an increasing concentration of 2,4-D up to 10 $mg\;l^{-1}$ with the frequency rate falling to 16.7%. Cell suspension cultures were established from zygotic embryo-derived calluses using half-strength MS medium supplemented with 0.3 $mg\;l^{-1}$ of 2,4-D. Upon plating onto half-strength MS basal medium, over 92.3% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted into potting soil and achieved full growth to an adult plant in a growth chamber. The high frequency plant regeneration system for Nymphoides coreana established in this study will be useful for genetic manipulation and cryopreservation of this species.

A Study on the Mass Transfer and Metal Extraction by use of Hydrophobic Membrane (소수성막을 이용한 금속추출 및 물질전달에 관한 연구)

  • Lee, Ryong-Jin;Kim, Young-Il;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1036-1042
    • /
    • 1998
  • It was investigated that the extraction of Cr(VI) from aqueous solution into the organic TDA and the stripping(back extraction) of Cr(VI) from the Cr(VI)-TDA complex into NaOH aqueous solution by hydrophobic hollow fiber membrane. It was found that the mass transfer rates of stripping process were smaller than those of the extraction process. This result was expected that membrane resistance, neglected in the extraction process, acts on the stripping process when organic phase flow in the tube side of the hydrophobic membrane. Hollow fiber modules were made by potting the desired number(60, 100, 150, 300fibers). We also examined the effect of flow rates of aqueous and organic phase on the mass transfer rate in the membrane modules. From these experiments, we identified for the extraction process by using hydrophobic membrane, the effect of flow rate of aqueous phase on the mass transfer rate was significant, but that of organic phase was negligible one. In the stripping process, however, mass transfer rate depend neither flow rate of aqueous(stripping solution) phase nor that of organic(Cr-TDA complex) phase.

  • PDF

In Vitro Rooting of Cnidium offcinale Makino through Shoot Tip Culture and It's Rhizome Growth under Different Transplanting Dates (경정배양(莖頂培養) 천궁유묘의 기내(器內)발근과 포장정식기별 근경생육(根莖生育))

  • Kim, Chang-Kil;Lee, Hyun-Suk;Chung, Jae-Dong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.15
    • /
    • pp.109-114
    • /
    • 1997
  • This studies were conducted to improve the root formation of plantlet derived from shoot tip culture and to evaluate the optium transplanting date of Cnidium officinale Makino in field. The rooting rate of shoot-tip derived plantlets was 81% on media containing 1.0 mg/L IBA and 0.05 mg/L BA within 30 days after culture. Upon transfer into potting soil, the seedling grown well under 75% shading. Optimal transplanting date on taking roots and rhizome growth was May 5 in field.

  • PDF

Laboratory Measurements on the Uptake of Carbon Monoxide by Soils (토양의 일산화탄소 제거에 관한 연구)

  • Myung Ja Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.31-37
    • /
    • 1983
  • The consumption of atmospheric carbon monoxide by soil was measured under laboratory conditions in different types of soils. Laboratory experiments were performed with humus containing high proportion of organic matter, roadside soils, and humus and roadside soils previously exposed to high concentration of CO by reusing in the experiment. CO concentrations in the 18.2 l-reaction vessel were varied from 2,000 ppm to 24,000ppm to estimate the effectiveness of CO consumption at high level of CO. The uptake of CO by soil was measured by gas chromatography using a TCD detector. The control experiments conducted along with the soil experiments evidently indicated that the potting soil is responsible for CO consumption. Humus showed much higher CO uptake rates compared with the soil taken from roadside. The humus reused in the experiment showed somewhat higher rates(15%) of uptake than the fresh one. The soil's ability to remove CO from the test atmosphere reached a maximum near the CO concentration of 13,000 ppm in the range of $9,000~24,000ppm$. The addition of streptomycin did not influence the removal capacity of soil significantly, whereas 10% saline solution remarkably prevented CO uptake of the humus sample.

  • PDF

High Frequency Adventitious Shoot Formation and Plant Regeneration in Leaf Explant Cultures of Ixeris sonchifolia Hance, a Newly Proposed Model Plant for Organogenesis

  • Min Sung-Ran;Kim Young-Hoe;Jeong Won-Joong;Han Su-Kyung;In Don-Su;Liu Jang R.
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.221-224
    • /
    • 2003
  • Leaf explants of Ixeris sonchifolia produced adventitious shoots at a frequency of 100% when cultured on MS medium supplemented with combinations of various concentrations of 6-benzyladenine (BA) (0.44, 4.44, or 8.87 ${\mu}M$) and 0.54 ${\mu}M$ NAA, or MS medium supplemented with 22.19 ${\mu}M$ BA and 2.69 ${\mu}M\;\alpha$-naphthaleneacetic acid (NAA) after four weeks of culture. Each explants (approximately $3{\times}6mm$) produced greater than 70 shoots at a combination of 0.44 ${\mu}M$ BA and 0.54 ${\mu}M$ NAA. Leaf explants produced shoots at a frequency of greater than 80% even at as low as 0.13 ${\mu}M$ BA as the sole growth regulator. Upon transfer to one-third strength MS with 0.54 ${\mu}M$ NAA, excised adventitious shoots were rooted at a frequency of 100%. Regenerated plantlets were transplanted to potting soil and grown to maturity in a greenhouse. The competence of I. sonchifolia for plant regeneration via organogenesis appears to be greater than the competence of tobacco, currently the best model plant for organogenesis.

Establishment of high frequency plant regeneration system from leaf explants of Pinellia koreana via bulblets formation

  • Oh, Myung-Jin;Park, Jong-Mi;Lee, Bu-Youn;Choi, Pil-Son;Tae, Kyoung-Hwan;Kim, Suk-Weon
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.193-196
    • /
    • 2009
  • Pinellia koreana K-H Tae & J-H Kim is a recently discovered Korea endemic medicinal plant species whose natural habitat is rapidly destroyed by industrial development. Described in this paper are culture conditions for high frequency plant regeneration via bulblet formation from leaf explant cultures of P. koreana. Leaf explants formed white nodular structures and off-white calluses at a frequency of 91.2% when cultured on MS medium supplemented with 2 mg/L BA and 0.5 mg/L NAA. However, the frequency of white nodular structures and off-white calluses formation was slightly decreased with an increasing concentration of NAA up to 4 mg/L, where the frequency reached 31.7%. Most petiole explants did not form white nodular structures and off-white calluses except the combination treatment of 2 mg/L BA and 2 mg/L NAA. Upon transfer onto MS basal medium, over 90% of nodular structures gave rise to numerous bulblets and developed into plantlets. Plantlets regenerated from bulblets were transplanted to potting soil and grown to maturity at a survival rate of over 95% in a growth chamber. Therefore, the in vitro plant regeneration system of P. koreana obtained in this study will be useful for mass propagation and long-term preservation of genetic resources of P. koreana.

Plant Growth Promotion and Induced Resistance by the Formulated Bacillus vallismortis BS07M in Pepper (Bacillus vallismortis BS07M 제형의 고추 생장촉진과 병저항성 유도)

  • Lee, Yong Ho;Song, Jaekyeong;Weon, Hang-Yeon;Park, Kyungseok;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.284-288
    • /
    • 2016
  • A plant growth promoting rhizobacterium, Bacillus vallismortis BS07M, was formulated as a clay pellet (CP) to evaluate its pepper growth promotion and induced resistance against various diseases under field and storage conditions. Peppers were grown in 50-hole tray containing potting mixture with CP in seedling raising stage, and then it was transplanted into a field. After transplanting, pepper plants treated with CP in seedling raising stage increased shoot growth and reduced disease severity caused by Phytophthora capsici in detached pepper leaves compared to untreated control. Moreover, treatment with CP in seedling raising stage increased fruit weight per plant; after harvesting, pepper fruits shown reduced diameter of lesions by Colletotrichum acutatum, and occurrance of soft rot in storage condition. These results indicated that CP could affect plant growth and induced resistance in pepper plants under field condition, and maintenance of fruit during storage.

High Frequency Somatic Embryogenesis and Plant Regeneration in Seedling Explant Cultures of Melon (Cucumis melo L.) (멜론(Cucumis melo L.) 유묘 절편으로부터 고빈도의 체세포배발생과 식물체 재분화)

  • 최필선;소웅영;조덕이;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Cotyledonary and hypocotyl explants of melon seedlings were cultured on Murashige and Skoog's (MS) medium supplemented with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D) and benzyladenine (B.A).Up to 22% of cotyledonary explants and 7%, of hypocotyl explants, respectively: Produced somatic embryos through intervening two types of calli: bright yellow compact (BYC) callus and pale-yellow compact (PYC) callus. BYC callus was capable of producing somatic embryos at initial culture, but it became necrotic as subrulhues proceeded. In contrast UC callus was incapable of producing somatic embryos during initial culture (first 6 weeks), but it became bright-yellow friable (BYF) callus with forming a few globular embryos after 2 months of subculture, indicating that the callus turned embryogenic. The embryogenic capacity of BYF maintained for over one year when the callus was sucultured at 4-week interval. Upon transfer onto MS basal medium the callus gave rise to numerous somatic embryos and subsequently converted to plantlets. Plantlets were transplanted to potting soil and grown to maturity in the phyotron.

  • PDF

Plant Regeneration from Protoplasts of Suspension Cultured Cells in Arabidopsis thaliana (애기장대(Arabidopsis thaliana) 현탁배양세포의 원형질체로부터 식물체 재분화)

  • 김명덕;김준철;진창덕;임창진;한태진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Protoplasts of Arabidopsis thaliana were easily isolated from the shoot-forming (SF) suspension-cultured cell clusters with 4 hours-shaking condition (40 rpm) on CPD enzyme solution containing 1% cellulase R-10, 0.25% pectolyase Y-23 and 0.5% driselase. Protoplasts were cultured on liquid KAO medium supplemented with 1 mg/L 2,4-D, 0.5 mg/L kinetin, 200 mg/L spermidine and 68 g/L glucose. Also, protoplasts were cultured on 0.2 $\mu$M membrane filter placed onto CP solid medium containing the suspension cells as feeder cells in the dark at $25^{\circ}C$ for 4 weeks. Protoplast-derived-SF calli were cultured on MS medium containing 0.05 mg/L IAA, 7 mg/L 2 ip and 30 g/L sucrose under the continuous illumination for four weeks. The frequency of shoot formation was about 60%. The regenerants were transferred into potting soil to grow mature plants. The regenerants formed the silques with seeds after 8 weeks of cultures.

  • PDF