• Title/Summary/Keyword: pottery-making soils

Search Result 5, Processing Time 0.042 seconds

Physical and Mineralogical Properties of Pottery-Making Soils in Korea (국내 도자기용 태토의 토질 및 광물 특성)

  • Kim, Hak Joon;Lee, Yong Cheon;Lee, Yu Jin;Lee, Ho Jeong;Jeong, Chan Ho
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.685-696
    • /
    • 2022
  • Although the use of pottery-making soils has a long history, its use in the pottery industry requires that physical and geotechnical properties of the materials be established to define the suitability for various purposes. The main purpose of this study is to identify the different types of clays and mineral composition and to perform the geotechnical evaluation of the clays for making pottery products. Soils investigated in this study include raw materials used for making Baekja (white porcelains), Chungja (celadons), Buncheong, Sancheong, and Johyung. Pottery-making soils are manufactured by using different types of soils and sold by individual ceramic clay company. This study includes physical tests of soil and chemical analysis of major elements using XRF and XRD instrumentation. Grain size distributions, mineralogical composition, and a range of plasticities of soils for making different types of potteries are presented. Correlations between specific type of pottery clays and geotechnical and mineralogical characteristics are determined by comparing the test results. Since quantitative research using laboratory tests for pottery-making soils are rarely performed in Korea, further research should be done in the future to improve the Korean pottery industry.

Firing Condition, Source Area and Quantitative Analysis of Plain Coarse Pottery from the Unjeonri Bronze Age Relic Site, Cheonan, Korea (천안 운전리 청동기 유적지에서 출토된 무문토기의 정량분석, 산지 및 소성조건)

  • Choi, Seok-Won;Lee, Chan-Hee;Oh, Kuy-Jin;Lee, Hyo-Min;Lee, Myeong-Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.36
    • /
    • pp.267-297
    • /
    • 2003
  • The plain coarse pottery from the Unjeonri Bronze Age relic sites in the Cheonan, Korea were studied on the basis of clay mineralogy, geochemistry and archaegeological interpretations. For the research, the potteries are utilized at the analysis for 6 pieces of plain coarse potteries. Color of the these potteries are mainly light brown, partly shows the yellowish brown to reddish brown. The interior, surface and inside of the pottery appear as different colors in any cases. Original source materials making the Unjeonri potteries are used of mainly sandy clay soil with extreme coarse grained irregularly quartz and feldspar. The magnetic susceptibility of the Unjeonri pottery range from 0.20 to 1.20. And the Unjeonri soil's magnetic susceptibility agree almost with 0.20 to 1.30. In the same magnetization of soil and pottery, the results revealed that the Unjeonri soil and low material of pottery are same produced by identical source materials. The Unjeonri potteries and soil are very similar patterns with all characteristics of soil mineralogy, geochemical evolution trend. The result seems to be same relationships between the behavior and enrichment patterns on the basis of a compatible and a incompatible elements. Consequently, the Unjeonri potteries suggest that made the soil to be distributed in the circumstance of the relic sites as the raw material are high in a greater part. In the Unjeonri soil, the kaolinite is common occurred minerals. However, in the Unjeonri pottery, the kaolinite was not detected in all broken pieces. The kaolinite was presumed to destroy crystal structure during the firing processes of over $550^{\circ}C$. The quartz is phase transition from ${\alpha}$-quartz to ${\beta}$-quartz at $573^{\circ}C$, but the Unjeonri pottery did not investigated any phase transition evidences of quartz. The chorite was detected within the mostly potteries and soils. As the results, the Unjeonri potteries can be interpreted by not experiencing a firing temperature over $800^{\circ}C$. The colloidal and cementing materials between the quartz and low materials during the heating did not exist in the internal part of the potteries. An any secondary compounds by heating does not appear within the crack to happen during the dry of the pottery. The hyphae group are kept as it is with the root tissue of an organic matters to live in the swampy land. In the syntheses of all results, the general firing condition to bake and make the Unjeonri pottery is presumed from $550^{\circ}C$ to $800^{\circ}C$. However, the firing condition making the Unjeonri pottery can be different firing temperature partially in one pottery. Even, the some part of the pottery does not take a direct influence on the fire.

Material Characteristics and Clay Source Interpretation of Joseon (the 15th to 17th Century) Potteries from Ssangyongdong Yongam Site in Cheonan, Korea (천안 쌍용동 용암유적 출토 조선시대 토기의 재료과학적 특성과 원료의 산지해석)

  • Kim, Ran-Hee;Lee, Chan-Hee;Yun, Jung-Hyun
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.7-20
    • /
    • 2012
  • This study was to identify the material characteristics and provenance of the Joseon (the 15th to 17th century) potteries from Ssangyongdong Yongam site in Cheonan. The pottery samples of the kilns and the workshops (habitation) from the study area have grey or red color with similar matrix but various shapes and different hardness, according to firing temperature. All of the pottery and the workshop soils were very similar patterns with characteristics of occurrences, mineralogy and geochemical evolution trend. But soils from around the site does not correspond with them. So the workshop soil that the fine clay is raw clay for making pottery in Yongam site. Firing temperature of soft-type potteries were presumed to be formed around $900^{\circ}C$ based on phase transition of clay minerals and mica. Hard-type pottery, mullite was detected and plagioclase was not detected by X-ray diffraction analysis, which means that potteries had experienced firing between 1,000 to $1,100^{\circ}C$.

The scientific analyses and classifications of potteries focused on the artifacts from Changdo (도.토기의 과학적 분석 및 분류-전남 완도군 장도 청해진 유적을 중심으로)

  • Hong, Jong-Ouk;Cho, Nam-Chu;Kang, Dai-Il;Lee, Myong-Hee
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.233-271
    • /
    • 2000
  • This study has proved if there are homogeneities in crystal structures, firing temperaures and element compositions of 69 specimens for potteries and soils from Changdo, Kangjin-gun, Jinjuk-Ri in Korea and Yaezhou inChina and obtained the following results.1. XRD analyses showed that soft potteries seemed to contain ($\alpha$)quartz, feldspar, while hard potteries seemed to contain ($\alpha$-)quartz, mullite, tridymite, feldspar. Jinjuk-Ri soils consisted of clays such as Kiolinite, Montmorillonite, Muscovite, Illite and, mica and feldspar etc.2. It was estimated that the firing temperatures which are determined by crystals using XRD, ranged from $550^{\circ}C$ to $870^{\circ}C$ for soft potteries and $870^{\circ}C$ to $975^{\circ}C$ for hard potteries.3. The firing temperatures for 4-pieces of Changdo pottery were measured by using TG-DTA, and it was found that specimen No. 10 was fired at temperatures below $600^{\circ}C$, while specimens No. 14, No. 23 and No. 29 were fired at temperatures above $1000^{\circ}C$.4. It was found that the specimems for potteries and porcelains from Changdo, Kangjin-gun, Jinjuk-Ri in Korea and Yaezhou in China were apparently classified into 4 clusters. This suggests that there are no correlations between the raw materials used in each 4 regions. Among the porcelains from Changdo, there were many typologically similar ones to those from Yaezhou in China in the 9th centry, but the analyses of porcelains only from Changdo, Kangjin in Korea and Yaezhouin China showed that they were classified into 3 clusters. This suggest that there are no correlations between the raw materials used for making porcelains in Changdo, Kangjin-gun, Jinjuk-Ri in Korea and Yaezhou in China.

  • PDF

Material Characteristics and Clay Source Interpretation of Crucibles in Baekje Kingdom Excavated from the Ssangbukri Site in Buyeo, Korea (부여 쌍북리 유적 출토 백제 도가니의 재료학적 특성과 원료의 산지해석)

  • Kim, Ji-Young;Park, Jin-Young;Park, Dae-Sun;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • The crucibles of Baekje Kingdom from the Ssangbukri Site which were used for glass and metal melting had light brown, grayish blue and grayish brown colored bodies. In thin section, the crucibles contained numerous quartz grains and pottery fragments. The surface was covered with fine grained quartz for thermal resistance. Based on decomposition of mica group minerals and formation of mullite detected by X-ray diffraction analysis, it was inferred that all crucibles have been fired over $1,000^{\circ}C$. It was also found that firing temperature has exceeded $1,100^{\circ}C$ in some crucibles because feldspar was not detected. The maximum temperature was assumed at $1,200^{\circ}C$. The magnetic susceptibility values and geochemical characteristics sorted out the crucibles into two groups that differed from the characteristics of the local soils. This reflected geological setting of the site where the alluvium was formed from two kinds of surrounding rock masses, granite gneiss and biotite granite. However, the local soils had similarities with the crucibles in weathering degree and geochemical behavior of major elements. In consequence, it was considered that the raw clay of the crucibles was supplied from the local area of the site.