• 제목/요약/키워드: potentiostat

검색결과 132건 처리시간 0.021초

양극산화로 제작된 이산화티타늄 나노튜브 박막을 이용한 휴믹산 제거 (Removal of Humic Acid Using Titanium Dioxide Nanotube Thin Film Fabricated by Anodization)

  • 윤동민;장준원;박재우
    • 대한환경공학회지
    • /
    • 제30권3호
    • /
    • pp.339-344
    • /
    • 2008
  • 티타늄 박막을 1 M의 황산나트륨 수용액과 0.5 wt%의 불화나트륨에 의해 제조된 전해질 용액에 담지하고 전기화학적 양극산화법으로 약 20분간 20$^{\circ}C$의 온도로 수행하여 티타늄다이옥사이드 나노튜브 필름을 제작하였다. 주사전자현미경과 X선회절분석기를 이용하여 각각 미세구조와 결정구조를 측정하였으며, 나노튜브의 직경은 대략 100 nm 정도이고, 길이는 1 $\mu$m 정도로 나타났다. 이 후 티타늄다이옥사이드 나노튜브는 450에서 풀림공정을 수행하였으며, 아나타제 결정형으로 나타났다. 또한 본 연구에서는 제작된 나노튜브 박막을 이용하여 물에 용존된 휴믹산의 제거실험을 수행하였으며 Langmuir-Hinshelwood kinetic 0차 반응의 경향을 보였으며, 약 0.3 g 정도의 파우더형 광촉매와 같은 효율을 보였다.

EPW 용액에서의 실리콘 양극 산화막 형성에 관한 연구 (Anodic Oxidation of Silicon in EPW Solution)

  • 부종욱;김선미;김승희;김성태;권숙인
    • 한국진공학회지
    • /
    • 제2권2호
    • /
    • pp.181-187
    • /
    • 1993
  • Si 이방성 에칭 용액인 EPW(Ethylenediamine, Pyrocatechol, Water) 용액내에서 potentiostat를 이용한 cyclic polarization 방법으로 양극 산화막의 연구를 수행하였다. p-Si 및 n-Si에서 양극 산화막의 breakdown potential은 동일한 값을 보였으며, $p^+$-Si의 경우에는 양극 산화막의 breakdown이 일어나지 않았다. 산화막의 XPS 분석결과 n-Si과 p-Si의 경우 Si 2p photopeak의 chemical shift는 각각 ${\Delta}$3.62eV, ${\Delta}$3.55eV였으며, $p^+$-Si의 경우에는 ${\Delta}$4.25eV였다. 따라서 $p^+$-Si의 양극 산화막이 light doping의 경우와 비교하여 커다란 에칭 저항성을 보이는 것은 산화막의 화학적 조성차이에 기인하는 것이라 생각된다. $p^+$-Si이 에칭 용액내에서 anodic bias 상태에 농이게 되면 boron이 표면으로 diffuse-out되는 것을 SIMS 분석을 통해 알 수 있었는데, 그 원인은 아직 분명하지는 않지만, 이것은 실제 etch-stop이 일어나는 임계 boron 농도가 일반적으로 알려진 값보다 훨씬 높을 것이라는 것을 시사한다.

  • PDF

치과용 아말감의 산화환원에 관한 전기화학적 연구 (AN ELECTROCHEMICAL STUDY ON THE OXIDATION' AND REDUCTION OF DENTAL AMALGAM)

  • 이인복;이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제18권2호
    • /
    • pp.431-445
    • /
    • 1993
  • The purpose of this study was to observe corrosion characteristics of six dental amalgams and was to analyse corrosion products electrochemically. After each amalgam alloy and Hg was triturated as the direction of the manufacturer by using mechanical amalgamator, the triturated mass was inserted into the cylinderical metal mold ($12{\times}10mm$) and was condensed with 160kg/$cm^2$ by using the hydrolic press. The specimen was removed from the mold and was stored at room temperature for 1 week, and was polished with amalgam polishing kit. The anodic and cathodic polarization curve was obtained by using cyclic voltammetric method with 3-electrode potentiostat in saline for each amalgam and Ag, Sn, Cu plate specimen at $37{\pm}0.5^{\circ}C$. The potential sweep range was -1.7V~0. 4V(vs SCE) in working electrode and scan rate was 50mV/s and the exposed surface area of each specimen to the electrolytic solution was $0.79cm^2$. The results were as follows. 1. In anodic-cathodic polarization curve of amalgam specimens, two anodic current rising areas and two cathodic current peaks were obtained at the low Cu amalgam(CF, CS) specimen and three anodic current rising areas and three cathodic current peaks were obtained at the high Cu amalgam (TY, DS, HV) specimen. 2. As this compared with the anodic and cathodic current peak potentials of Sn, Cu and Ag specimen, the first cathodic current peak I c was caused by the reduction of divalent tin salt, second cathodic current peak IIIc results from the reduction of quadravalent tin salt, and third cathodic current peak me results from the reduction of copper salt. 3. As reverse potential sweeping was done repeatedly, anodic current was decreased slightly in all amalgam specimens.

  • PDF

Tio2 나노튜브의 열처리 온도에 따른 Anatase 상의 분포와 그에 따른 광 촉매 효율 (Distribution of Anatase Phase Depending on the Thermal Treatment Temperature of Tio2 Nanotubes and Its Effects on the Photocatalytic Efficiency)

  • 김세임;황지훈;이승욱;김락경;손수민;;양준모;양비룡
    • 한국세라믹학회지
    • /
    • 제45권6호
    • /
    • pp.331-335
    • /
    • 2008
  • The purpose of this study is to characterize the photo-catalytic efficiency of $TiO_2$ nanotube with respect to the distribution of anatase phase which can be changed by the annealing temperature of $TiO_2$ nanotube. $TiO_2$ nanotube was fabricated by the anodization method in the 0.5 wt% HF electrolyte. And then the $TiO_2$ nanotube was annealed at temperatures ranging from $380^{\circ}C$ to $780^{\circ}C$ in dry oxygen ambient for 2 h. For the photo-catalytic water-splitting tests, the photocurrent density was measured as a function of applied potential with a potentiostat using a Ag/AgCl reference, Pt counter electrode, and 1 M KOH electrolyte under illumination of UV by a Xe arc lamp of 1 KW. According to the UV photo-catalytic water-splitting tests, the nanotube annealed at $560^{\circ}C$ was found to show the highest photocurrent density.

$TiO_2$ 태양광 전극을 이용한 태양-수소 제조시스템 기초연구 (A Preliminary Study on the Solar-Hydrogen System Utilizing Photoanodic $TiO_2$ Semiconductor Electrode)

  • 이태규;조서현;조덕기;최영희
    • 태양에너지
    • /
    • 제11권2호
    • /
    • pp.70-76
    • /
    • 1991
  • 본 실험에서는 태양광의 photon energy를 활용한 물분해 수소제조 연구를 위하여 일차적으로 $TiO_2$ 광전극의 제조와 함께 전기화학적 특성관찰의 기초실험을 수행하였다. $TiO_2$ anatase 분말을 원형으로 molding 한 후 $1250^{\circ}C$에서 sintering하여 n형 반도체 전극을 제조하였으며, titanium plate를 직접 funace내에서 $800^{\circ}C$의 공기 및 산소 분위기 속에서 각각 산화막을 생성시켰다. 각 전극들의 XRD pattern을 관찰한 결과 rutile $TiO_2$ 성질의 표면구조를 지니고 있었으며, 표면상태를 광학 현미경으로 관찰하였다. 선택된 $TiO_2$ 전극의 전기적 특성을 조사하기 위하여 두가지 농도의 NaOH electrolyser내에서, dark상태 그리고 Xenon lamp를 활용한 illuminated상태에 대하여 각각의 I-E 특성을 Potentiostat을 이동하여 관찰분석하였다.

  • PDF

치아색으로 코팅된 NiTi 와이어의 전기화학적 특성 (Electrochemical Characteristics of Tooth Colored NiTi Wire)

  • 김원기;조주영;최한철;이호종
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.223-232
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength, friction resistance, and high corrosion resistance. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate electrochemical characteristics of tooth colored NiTi wire using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The corrosion properties of the specimens were examined using potentiodynamic tests (potential range of -1500 ~ 2000 mV) and electrochemical impedance spectroscopy (frequency range of 100 kHz ~ 10 mHz) in a 0.9 % NaCl solution by potentiostat. From the results of polarization behavior, the passive region of non-coated NiTi wire showed largely, whereas, the passive region of curved NiTi wire showed shortly in anodic polarization curve. In the case of coated NiTi wire, pitting and crevice corrosion occurred severely at interface between non-coated and coated region. From the results of EIS, polarization resistance(Rp) value of non-coated round and rectangular NiTi wire at curved part showed $5.10{\times}10^5{\Omega}cm^2$ and $4.43{\times}10^5{\Omega}cm^2$. lower than that of coated NiTi wire. $R_p$ of coated round and rectangular NiTi wire at curved part showed $1.31{\times}10^6{\Omega}cm^2$ and $1.19{\times}10^6{\Omega}cm^2$.

치과 임플란트 고정체의 여러 가지 제조공정과정에 따른 표면특성 (Surface Characteristics of Dental Implant Fixture with Various Manufacturing Process)

  • 정용훈;문영필;이충환;유진우;최한철
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.17-24
    • /
    • 2010
  • In this study, surface characteristics of dental implant fixture with various manufacturing process have been researched using electrochemical methods. The dental implant fixture was selected with 5 steps by cleaning, surface treatment and sterilization with same size and screw structure; the 1st step-machined surface, 2nd step-cleaned by thinner and prosol solution, 3th step-surface treated by RBM (resorbable blasting media) method, 4th step-cleaned and dried, 5th step-sterilized by gamma-ray. The electrochemical behavior of dental implant fixture has been evaluated by using potentiostat (EG&G Co, 2273A) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion surface was observed using field-emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The step 5 sample showed the cleaner and rougher surface than step 3 sample. The step 5 sample of implant fixture treated by RBM and gamma sterilization showed the low corrosion current density compared to others. Especially, the step 3 sample of implant fixture treated by RBM was presented the lowest value of corrosion resistance and the highest value of corrosion current density. The step 3 sample showed the low value of polarization resistance compared to other samples. In conclusion, the implant fixture treated with RBM and gamma sterilization has the higher corrosion resistance, and corrosion resistance depends on the step of manufacturing process.

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Cu CMP에서 Corrosion Inhibitor에 의한 연마 특성 분석 (Analysis of Cu CMP according to Corrosion Inhibitor Concentration)

  • 주석배;이현섭;김영민;조한철;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.113-113
    • /
    • 2008
  • Cu CMP (Chemical Mechanical Planarization) has been used to remove copper film and obtain a planar surface which is essential for the semiconductor devices. Generally, it is known that chemical reaction is a dominant factor in Cu CMP comparing to Silicon dioxide CMP. Therefore, Cu CMP slurry has been regarded as an important factor in the entire process. This investigation focused on understanding the effect of corrosion inhibitor on copper surface and CMP results. Benzotriazole (BTA) was used as a corrosion inhibitor in this experiment. For the surface analysis, electrochemical characteristics of Cu was measured by a potentiostat and surface modification was investigated by X-ray photoelectron spectroscopy (XPS). As a result, corrosion potential (Ecorr) increased and nitrogen concentration ratio on the copper surface also increased with BTA concentration. These results indicate that BTA prevents Cu surface from corrosion and forms Cu-BTA layer on Cu surface. CMP results are also well matched with these results. Material removal rate (MRR) decreased with BTA concentration and static etch rate also showed same trend. Consequently, adjustment of BTA concentration can give us control of step height variation and furthermore, this can be applicable for Cu pattern CMP.

  • PDF

Li 이차전지용 티타네이트 나노튜브 제조 및 특성평가 (Characterization and preparation titanate nanotubes for Li-ion secondary battery)

  • 오효진;이남희;윤초롱;정상철;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.510-510
    • /
    • 2007
  • Titanate nanotube(TNT)는 높은 비표면적과 우수한 물리화학적 특성을 가지고 있어 광촉매, 수소 저장재료, 태양전지용 전극재료 등에 적용되고 있다. 또한, 티타네이트 나노튜브는 전자 이동이 원활한 구조적 특징을 가지고 있어 리듐 이차전지용 호스트 재료로서 많은 연구가 진행 중이다. 이에 본 연구에서는 저온균일침전법으로 제조한 루틸상 $TiO_2$ 분말에 Lithium chloride를 1~10wt%를 동시에 첨가한 후 10M의 sodium hydroxide 수용액 내에서 수열합성하여 리튬이 도핑된 티타네이트 나노튜브를 제조하였다. 제조된 분말의 입자형상 및 크기는 전자주사 현미경을 이용하여 관찰하였으며, X-선 회절분석을 이용하여 리튬 첨가에 따른 결정상 변화를 관찰하였다. 또한 리튬이 도핑된 티타네이트 나노튜브의 전기화학적 특성 평가를 위해 양극 활물질 : 도전제 : 바인더를 75 : 20 : 5의 비율로 혼합한 후 coin cell을 제조하였고, potentiostat를 이용하여 용량 측정 및 cycle 특성을 실시하였다. 수열 합성법에 의해 형성된 입자는 직경 10nm, 길이 수 ${\mu}m$로 관찰되었으며, X-선 회절 시험 결과 LiO와 같은 이차상은 발견되지 않았다. 측정된 coin cell의 용량은 240mAh/g을 나타내었으나, 싸이클 특성이 빠르게 저하됨을 확인할 수 있었다.

  • PDF