• Title/Summary/Keyword: potentiodynamic test

Search Result 167, Processing Time 0.024 seconds

A Study on Local Conditions in Amine Solutions Influencing on Corrosion of Carbon Steel (탄소강의 부식에 미치는 아민계 용액의 조건에 관한 연구)

  • Gwon, Hyuk-Jun;Ahn, Hyun-Kyoung;Song, Chan-Ho;Park, Byung-Gi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2879-2887
    • /
    • 2011
  • This research is aimed for the better understanding of corrosion behavior of carbon steel in ETA or $NH_3$ solution at high temperature. To minimize the corrosion it is important to select proper pH control agent(s), which also let it maintain basic or reductive environment inside the steel pipe. This work will provide the practical guideline which can be applied to the nuclear power plant for developing the life extension method of carbon steel. Experiments were carried out by measuring the corrosion rate using the potentiodynamic polarization curve of carbon steel in ETA and NH3 at different temperatures. The corrosion rate was estimated by using the Tafel curve measured under various test conditions: i) $NH_3$ is less than ETA as a pH agent. ii) the corrosion was reduced at high pH, and iii) the corrosion was maximum in the temperature range of $150\sim200^{\circ}C$.

MICROSTRUCTURE AND ELECTROCHEMICAL BEHAVIORS OF EQUIATOMIC TiMoVCrZr AND Ti-RICH TiMoVCrZr HIGH-ENTROPY ALLOYS FOR METALLIC BIOMATERIALS

  • HOCHEOL SONG;SEONGI LEE;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1317-1322
    • /
    • 2020
  • The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10C10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10-4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate (CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교)

  • Paik, Jung-Ho;Han, Won-Kyu;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.187-193
    • /
    • 2010
  • Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode (희생양극을 이용한 태양광 리본의 부식 저감)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.681-686
    • /
    • 2017
  • Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

Microstructure and Corrosion Resistance of Ti-15Sn-4Nb Alloy with Hf Adding Element (Hf가 첨가된 생체용 Ti-15Sn-4Nb 합금의 미세조직 및 내식성)

  • Lee, Doh-Jae;Lee, Kyung-Ku;Cho, Kyu-Zong;Yoon, Taek-Rim;Park, Hyo-Byung
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2001
  • This study is focusing on the improvement of problems of Ti-6Al-4V alloy. A new Ti based alloy, Ti-15Sn-4Nb, have designed to examine any possibility of improving the mechanical properties and biocompatibility. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at $100^{\circ}C$ for 24h. All specimens were solution treated at $812^{\circ}C$ and aged at $500^{\circ}C$ for 10h. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test and immersion test inl%Lactic acid solutions. Ti-15Sn-4Nb system alloys showed Widmanstatten microstructure after solution treatment which is typical microstructure of ${\alpha}+{\beta}$ type Ti alloys. Analysing the corrosion resistance of Ti alloys, it was concluded that the passive films of Ti-15Sn-4Nb system alloys are more stable than that of Ti-6Al-4V alloys. Also, the corrosion resistance of Ti-15Sn-4Nb system alloys was improved with adding elements, Hf. It was analysed that the passive film of the Ti-15Sn-4Nb alloy which was formed in air atmosphere was consisted of TiO2, SnO and NbO through X-ray photoelectron spectroscopy(XPS) analysis.

  • PDF

Improvement of Mechanical and Corrosion Properties of Mg-Ca-Zn Alloy by Grain Refinement (Grain Refinement를 통한 Mg-Ca-Zn합금의 기계적 특성 및 부식 특성 향상)

  • Kim, Dae-Han;Choi, Jong-Min;Lim, Hyun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.418-424
    • /
    • 2017
  • Magnesium has a higher specific strength than other metals and is widely used industry wide due to its excellent vibration absorption ability and electromagnetic wave shielding property.For example, it is used for automobile parts such as car seat frames and cylinder heads, and is widely used in electronic products such as notebook cases and mobile phone cases. In addition, it is in the spotlight as a bone-implant material used to assist in the treatment of damaged bones when the bones are cracked or broken. Currently, Ti alloy, stainless steel and Co-Cr-Mo alloy are used as the implant material, and the Mg alloy remains in research stage. The current problem with bone implant implants is that the patients must undergo reoperation to remove the implants after joint surgery. Magnesium, however, can achieve sufficient strength compared to current materials. In addition, since it is self-decomposed after the recovery, reoperation is not necessary. In this paper, Mg alloys were designed by adding harmless Ca and Zn to the human body. In order to improve the strength and corrosion resistance, the final alloy was designed by adding a small amount of Sr as a grain refiner. The radioactive elements of Sr are harmful to the human body, but other naturally occurring Sr elements are harmless. Microstructure analysis of the alloys was performed by optical microscopy and scanning electron microscopy. The mechanical properties and corrosion characteristics were evaluated by tensile test, potentiodynamic test and immersion test.

Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution (3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향)

  • Kim, Si-On;Hwang, Joong-Ki;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.300-311
    • /
    • 2019
  • The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.

Synthesis of graphene and its application to thermal and surface modification (그래핀의 합성과 열전도 및 표면 특성 개선 활용)

  • Kim, Yong-You;Jang, Hee-Jin;Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.549-554
    • /
    • 2013
  • With the synthesis of graphene on Cu using CVD, it was tried to show the behavior of graphene growth depending on the size and orientation of Cu grain. It was found out that even under the same temperature and pressure the use of different gases influences on the diffusion rate of Cu. As compared to Ar gas, Cu grain growing bigger under $H_2$ and $CH_4$ was resulted in bigger graphene grain. Corrosion resistance was evaluated by potentiodynamic polarization test in room temperature and found out that the graphene on Cu was more stable in order of 10 than pure Cu due to the chemical stability of graphene. The future work of this research will focus on the synthesis of graphene having no defects including grain boundaries, and its engineering use.

THE ELECTROCHEMICAL STUDY ON CORROSION RESISTANCE OF VARIOUS DENIAL MAGNETIC ATTACHMENTS (수종 치과용 자석유지장치의 부식저항성에 대한 전기화학적 연구)

  • Sohn Byoung-Sup;Chang Ik-Tae;Heo Seong-Joo;Keak Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.336-350
    • /
    • 2001
  • The purpose of this study was to investigate corrosion tendency and to compare corrosion resistance of three dental magnetic attachments and its keeper alloy by coercive, electrochemical method. By using petentiodynamic polarization technique, magnetic elements and its keeper alloy of Magfit EX600 system(MF, MFK), Dyna ES regular system(DN, DNK) and Shiner SR magnet system(SR, SRK) were corroded electrochemically in 0.9% NaCl electrolytic solution. Open-circuit potential and anodic polarization curve was measured with Potentiostat(model 273 EG&E) and polarization curve was created by current density per square area following scanning of increased series of voltage in the rate of 1.0mV per second. Before and after electrochemical corrosion, the surface roughness test was done. Thereafter the change of mean surface roughness value(Ra) and mean peak value(Rt) of surface roughness was compared one another. In order to observe the corroded surface of each specimen, metallurgical light microscopic(${\times}37.5$) and scanning electron microscopic view(SEM ${\times}100$) was taken and compared one another. Conclusion is followings. 1. All of six covering metal of dental magnetic attachments and its keeper alloy were corroded in various degree after electrochemical corrosion. 2. The corrosion resistance of which used in this experiment is the following in high order; DNK, MFK, DN, MF, SRK and SR. 3. Especially Shiner magnet system and its keeper alloy were more severely corroded after electrochemical corrosion and the change of Ra Rt value were more increased than others. 4 Metallurgical and scanning electron microscopic view showed the pitting corrosion tendency of all experimental alloy but DNK and SR. 5. Covering metal of magnet was more corroded than its keeper alloy.

  • PDF

Influence of Coating Defect Ratio on Tribological Behavior Determined by Electrochemical Techniques (전기화학적 분석을 통해 산출된 코팅 결함율이 트라이볼로지적 특성에 미치는 영향 평가)

  • Lee Young-Ze;Kim Woo-Jung;Ahn Seung-Ho;Kim Ho-Gun;Kim Jung-Gu;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2004
  • Many of the current development in surface modification engineering are focused on multilayered coatings, which have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel in this study. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N,\;WC-Ti_{0.53}Al_{0.47}N,\;WC-Ti_{0.5}Al_{0.5}N\;and\;WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behaviors. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec and a normal load of 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball $(H_R\;=\;66) $ having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with energy-dispersive spectroscopy (EDS). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$coatings with increasing of Al (aluminum) concentration.