• Title/Summary/Keyword: potentiodynamic electrochemical test

Search Result 92, Processing Time 0.036 seconds

Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell (MMO(Ti/Ru) 코팅된 타이타늄의 고분자 전해질 연료전지 양극환경에서의 전기화학적 거동)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.340-347
    • /
    • 2022
  • In this research, mixed metal oxide (TiO2, RuO2) coating was applied to grade 1 titanium as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Electrochemical experiments were carried out in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by DoE. The air was bubbled to simulate a cathode environment. Potentiodynamic polarization test revealed that corrosion current densities of the titanium substrate and MMO-coated specimen were 0.180 µA/cm2 and 4.381 µA/cm2, respectively. There was no active peak. After potentiostatic experiment, current densities of the titanium substrate and the MMO-coated specimen were 0.19 µA/cm2 and 1.05 µA/cm2, respectively. As a result of observing the surface before and after the potentiostatic experiment, cracked dried clay structures were observed without corrosion damage. Both the titanium substrate and the MMO-coated specimen could not satisfy the interfacial contact resistance suggested by the DoE. Thus, further research is needed before they could be applied as bipolar plates.

Influence of Inhibitors on the Corrosion of Al and Al-composites in Chloride-containing Solutions - A Review

  • Kumar, Neeraj;Srivastava, Ashok K.;Gautam, Prabhat;Manoj, M.K.
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.280-286
    • /
    • 2022
  • Corrosion is a natural, inevitable process, and is one of the world's most serious problems. Losses incurred due to corrosion are extremely expensive for society. Several technological strategies have been explored and implemented to address these losses. The use of inhibitors to prevent corrosion is a common and efficient method to reduce corrosion losses. This review covers Al and Al-composite corrosion inhibitors in chloride-containing solutions, because of their popularity in a broad array of industrial applications. A vast number of studies in the literature detail the common tendency of Al and Al-composites with reinforcements to deteriorate. Accordingly, it is worthwhile to employ inhibitors to protect them, as discussed in the present work. The emphasis is on selecting the smartest corrosion inhibitor and evaluating its performance. According to the study, the most commonly used corrosion inhibitors are 1,4-naphthoquinone (NQ), 1,5-naphthalene diol, 3-amino-1,2,4-triazole-5-thiol (ATAT), ammonium tetrathiotungstate, clotrimazole, amoxicillin, antimicrobial and antifungal drugs. Electrochemical impedance spectroscopy (EIS), potentiodynamic (PDP), and weight loss were among the most commonly used modern electrochemical technologies to test inhibitors' efficacy under environmental conditions.

Comparison of Electrochemical Corrosion Properties of Permanent Mold Casting GZ21 Alloy and AZ91 Alloy (금형 주조한 GZ21 합금과 AZ91 합금의 부식특성 비교)

  • Kim, Dae Han;Kim, Byeong Ho;Park, Kyung Chul;Chang, In Ki
    • Journal of Korea Foundry Society
    • /
    • v.36 no.2
    • /
    • pp.60-66
    • /
    • 2016
  • In this study, comparison of corrosion properties of the Mg-1.5Ge-1Zn (GZ21) alloy and Mg-9Al-1Zn (AZ91) alloy were investigated. The studied alloys were fabricated by permanent mold casting method. And the potentiodynamic test, hydrogen evolution test, immersion test and A.C Impedance test were carried out in a 3.5% NaCl solution with pH7.2 at room temperature to measure the corrosion properties. The microstructure of GZ21 alloy was composed of ${\alpha}-Mg$ and $Mg_2Ge$ phases and AZ91 alloy was composed of ${\alpha}-Mg$ and $Mg_{17}Al_{12}$ phases. From the test results, the corrosion property was improved by adding Ge. It seemed that the corrosion mechanism was changed from galvanic corrosion (AZ91) to filiform corrosion (GZ21).

Electrochemical Properties of Ti-30Ta-(3~15)Nb Alloys Coated by HA/Ti Compound Layer (HA/Ti 복합층 코팅한 Ti-30Ta-(3~15)Nb 합금의 전기화학적 특성)

  • Jeong, Yong-Hoon;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Electrochemical properties of Ti-30Ta-$(3{\sim}15)$Nb alloys coated by HA/Ti compound layer have been studied by various electrochemical method. Ti-30Ta binary alloys contained 3, 7, 10, and 15 wt% Nb contents were manufactured by the vacuum furnace system. The specimens were homogenized for 24 hrs at $1000^{\circ}C$. The samples were cut and polished for corrosion test and coating. It was coated with HA/Ti compound layer by magnetron sputter. The HA/Ti non-coated and coated morphology of Ti alloy were analyzed by x-ray diffractometer(XRD) and filed emission scanning electron microscope(FE-SEM). The corrosion behaviors were investigated using potentiodynamic method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The homoginazed Ti-30Ta-$(3{\sim}15wt%$)Nb alloys showed the ${\alpha}+{\beta}$ phase, and ${\beta}$ phase peak was predominantly appeared with increasing Nb content. The microstructure of Ti alloy was transformed from needle-like structure to equiaxed structure as Nb content increased. HA/Ti composite surface showed uniform coating layer with 750 nm thickness. The corrosion resistance of HA/Ti composite coated Ti-alloys were higher than those of the non-coated samples in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Especially, corrosion resistance of Ti-Ta-Nb system increased as Nb content increased.

Effects of HA/TiN Coating on the Electrochemical Characteristics of Ti-Ta-Zr Alloys (Ti-Ta-Zr합금의 전기화학적 특성에 미치는 HA/TiN 코팅의 영향)

  • Oh, Mi-Young;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.691-699
    • /
    • 2008
  • Electrochemical characteristics of Ti-30Ta-xZr alloys coated with HA/TiN by using magnetron sputtering method were studied. The Ti-30Ta containing Zr(3, 7, 10 and 15wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and coating, and then coated with HA/TiN, respectively, by using DC and RF-magnetron sputtering method. The analyses of coated surface and coated layer were carried out by using optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). The electrochemical characteristics were examined using potentiodynamic (-1,500 mV~ + 2,000 mV) and A.C. impedance spectroscopy(100 kHz ~ 10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructure of homogenized Ti-30Ta-xZr alloys showed needle-like structure. In case of homogenized Ti-30Ta-xZr alloys, a-peak was increased with increasing Zr content. The thickness of TiN and HA coated layer showed 400 nm and 100 nm, respectively. The corrosion resistance of HA/TiN-coated Ti-30Ta-xZr alloys were higher than that of the non-coated Ti-30TaxZr alloys, whic hindicate better protective effect. The polarization resistance($R_p$) value of HA/TiN coated Ti-30Ta-xZr alloys showed $8.40{\times}10^5{\Omega}cm^2$ which was higher than that of non-coated Ti-30Ta-xZr alloys.

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.

The Enhancement of Corrosion Resistance for WC-Co by Ion Beam Mixed Silicon Carbide Coating

  • Yeo, Sun-Mok;Kim, Dong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.101-101
    • /
    • 2010
  • A strong adhesion of a silicon carbide (SiC) coating on a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In the case of 1 M NaOH solution, a corrosion current density for a SiC coated WC-Co with a heat treatment at $500^{\circ}C$ displays about 50 times lower than that for the as-received WC-Co. However, in the case of 0.5 M H2SO4 solution, a corrosion current density for a SiC coated WC-Co displays about 3 times lower than that for as-received WC-Co. We discussed the physical reasons for the changes of the corrosion current densities at the different electrolytes.

  • PDF

Effect of Electrolyte Composition on Corrosion Behavior of PEO Treated AZ91 Mg Alloy

  • Park, Kyeong Jin;Lee, Jae Ho
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.227-231
    • /
    • 2009
  • Mg and Mg alloys have been used for lots of applications, including automobile industry, aerospace, mobile phone and computer parts owing to low density. However, Mg and Mg alloys have a restricted application because of poor corrosion properties. Thus, improved surface treatments are required to produce protective films that protect the substrate from corrosive environments. Environmental friendly Plasma Electrolytic Oxidation (PEO) has been widely investigated on magnesium alloys. PEO process combines electrochemical oxidation with plasma treatment in the aqueous solution. In this study, AZ91 Mg alloys were treated by PEO process in controlling the current with PC condition and treated time, concentration of NaF, NaOH, and $Na_2SiO_3$. The surface morphology and phase composition were analyzed using SEM, EDS and XRD. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimen. Additionally, salt spray tests were carried out to examine and compare the corrosion properties of the PEO treated Mg alloys.

Effects of Heat Treatment on Surface Properties of Aluminum 6061 Alloy After Anodization (알루미늄 6061 합금 양극산화 후 열처리에 따른 표면 특성 관찰)

  • Seungmin, Lee;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.495-502
    • /
    • 2022
  • Anodization is a representative electrochemical surface treatment method that can improve both heat resistance and corrosion resistance by forming an anodization film on the surface of the aluminum. However, these properties can be changed after an additional heat treatment process. In this study, Al 6061 was subjected to an anodization process at 60 V for 1 hour, 5 hours, or 9 hours. An additional heat treatment process was performed at 500 ℃ for 30 minutes. Field emission scanning electron microscopy (FE-SEM) analysis revealed that the thickness of the anodized film was increased in proportion to the anodization time. Both pore size and pore diameter of the anodized film was also increased after anodization. After an additional heat treatment process, there were no significant changes in the thickness, pore size, or pore diameter of the anodized film. Heat resistance was confirmed through thermal analysis and chemical resistance was evaluated with a potentiodynamic polarization test.

Corrosion behaviors of Cp-Ti and Ti-6Al-4V alloys by TiN coating (TiN 코팅된 Ti 및 Ti-6Al-4V합금의 부식거동)

  • Lee, Soon-Hyun;Jung, Yoong-Hun;Choi, Han-Chul;Ko, Yeong-Mu
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • Cp-Ti and Ti-6Al-4V alloys commonly used dental implant materials, particularly for orthopaedic and osteosynthesis because of its suitable mechanical properties and excellent biocompatibility. This alloys have excellent corrosion behavior in the clinical environment. The first factor to decide the success of dental implantation is sufficient osseointegration and high corrosion resistance between on implant fixture and its surrounding bone tissue. In this study, in order to increase corrosion resistance and biocompatibility of Cp-Ti and Ti-6Al-4V alloy that surface of manufactured alloy was coated with TiN by RF-magnetron sputtering method. The electrochemical behavior of TiN coated Cp-Ti and Ti-6Al-4V alloy were investigated using potentiodynamic (EG&G Co, PARSTAT 2273. USA) and potentiostatic test (250mV) in 0.9% NaCl solution at 36.5 $\pm$ 1$^{\circ}C$. These results are as follows : 1. From the microstructure analysis, Cp-Ti showed the acicular structure of $\alpha$-phase and Ti-6Al-4V showed the micro-acicular structure of ${\alpha}+{\beta}$ phase. 2. From the potentiodynamic test, Ecorr value of Cp-Ti and Ti-6Al-4V alloys showed -702.48mV and -319.87mV, respectively. Ti-6Al-4V alloy value was higher than Cp-Ti alloy. 3. From the analysis of TiN and coated layer, TIN coated surface showed columnar structure with 800 nm thickness. 4. The corrosion resistance of TiN coated Cp-Ti and Ti-6Al-4V alloys were higher than those of the non-coated Ti alloys in 0.9% NaCl solution from potentiodynamic test, indicating better protective effect. 5. The passivation current density of TiN coated Cp-Ti and Ti-6Al-4V alloys were smaller than that of the noncoated implant fixture in 0.9% NaCl solution, indicating the good protective effect resulting from more compact and homogeneous layer formation.

  • PDF