• 제목/요약/키워드: potential learning

검색결과 1,052건 처리시간 1.029초

미래학습에서의 Learning by Teaching 적용가능성 (Reconsidering the Concept and Potential of Learning by Teaching)

  • 최효선
    • 의학교육논단
    • /
    • 제23권1호
    • /
    • pp.3-10
    • /
    • 2021
  • Learning by teaching (LbT) has long been recognized as an important learning behavior that constructs meaning based on interactions between learners. This study aimed to explore the meaning of LbT as an important learning activity for future implementation in education. LbT is based on the cultural historical activity theory and sociocultural learning theory, as developed by scholars including Vygotsky. These frameworks value the construction of meaning based on language, and LbT is reported to be effective in constructing meaning. In addition, within the zone of proximal development posited by Vygotsky, learning through interaction between learners improves academic achievement, higher-order thinking, deep learning, and reflective learning. LbT also promotes students' learning presence, and strengthens various competencies such as collaboration and communication skills. Interactive behavior between learners in the form of LbT has been explored as an approach to teaching and learning, with methods including peer learning, peer tutoring, peer teaching, peer mentoring, Lernen durch Lehren, and peer-assisted learning. LbT has also been applied as a learning method. In the future, LbT has boundless potential to improve learning through activities such as flipped learning or online learning based on interactions between learners.

Pipe thinning model development for direct current potential drop data with machine learning approach

  • Ryu, Kyungha;Lee, Taehyun;Baek, Dong-cheon;Park, Jong-won
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.784-790
    • /
    • 2020
  • The accelerated corrosion by Flow Accelerated Corrosion (FAC) has caused unexpected rupture of piping, hindering the safety of nuclear power plants (NPPs) and sometimes causing personal injury. For the safety, it may be necessary to select some pipes in terms of condition monitoring and to measure the change in thickness of pipes in real time. Direct current potential drop (DCPD) method has advantages in on-line monitoring of pipe wall thinning. However, it has a disadvantage in that it is difficult to quantify thinning due to various thinning shapes and thus there is a limitation in application. The machine learning approach has advantages in that it can be easily applied because the machine can learn the signals of various thinning shapes and can identify the thinning using these. In this paper, finite element analysis (FEA) was performed by applying direct current to a carbon steel pipe and measuring the potential drop. The fundamental machine learning was carried out and the piping thinning model was developed. In this process, the features of DCPD to thinning were proposed.

Next-Generation Chatbots for Adaptive Learning: A proposed Framework

  • 정하림;유주헌;한옥영
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.37-45
    • /
    • 2023
  • Adaptive has gained significant attention in Education Technology (EdTech), with personalized learning experiences becoming increasingly important. Next-generation chatbots, including models like ChatGPT, are emerging in the field of education. These advanced tools show great potential for delivering personalized and adaptive learning experiences. This paper reviews previous research on adaptive learning and the role of chatbots in education. Based on this, the paper explores current and future chatbot technologies to propose a framework for using ChatGPT or similar chatbots in adaptive learning. The framework includes personalized design, targeted resources and feedback, multi-turn dialogue models, reinforcement learning, and fine-tuning. The proposed framework also considers learning attributes such as age, gender, cognitive ability, prior knowledge, pacing, level of questions, interaction strategies, and learner control. However, the proposed framework has yet to be evaluated for its usability or effectiveness in practice, and the applicability of the framework may vary depending on the specific field of study. Through proposing this framework, we hope to encourage learners to more actively leverage current technologies, and likewise, inspire educators to integrate these technologies more proactively into their curricula. Future research should evaluate the proposed framework through actual implementation and explore how it can be adapted to different domains of study to provide a more comprehensive understanding of its potential applications in adaptive learning.

Leveraging Visibility-Based Rewards in DRL-based Worker Travel Path Simulation for Improving the Learning Performance

  • Kim, Minguk;Kim, Tae Wan
    • 한국건설관리학회논문집
    • /
    • 제24권5호
    • /
    • pp.73-82
    • /
    • 2023
  • Optimization of Construction Site Layout Planning (CSLP) heavily relies on workers' travel paths. However, traditional path generation approaches predominantly focus on the shortest path, often neglecting critical variables such as individual wayfinding tendencies, the spatial arrangement of site objects, and potential hazards. These oversights can lead to compromised path simulations, resulting in less reliable site layout plans. While Deep Reinforcement Learning (DRL) has been proposed as a potential alternative to address these issues, it has shown limitations. Despite presenting more realistic travel paths by considering these variables, DRL often struggles with efficiency in complex environments, leading to extended learning times and potential failures. To overcome these challenges, this study introduces a refined model that enhances spatial navigation capabilities and learning performance by integrating workers' visibility into the reward functions. The proposed model demonstrated a 12.47% increase in the pathfinding success rate and notable improvements in the other two performance measures compared to the existing DRL framework. The adoption of this model could greatly enhance the reliability of the results, ultimately improving site operational efficiency and safety management such as by reducing site congestion and accidents. Future research could expand this study by simulating travel paths in dynamic, multi-agent environments that represent different stages of construction.

머신러닝 알고리즘 기반의 의료비 예측 모델 개발 (Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제1권1호
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

다층 신경회로망과 가우시안 포텐샬 함수 네트워크의 구조적 결합을 이용한 효율적인 학습 방법 (Efficient Learning Algorithm using Structural Hybrid of Multilayer Neural Networks and Gaussian Potential Function Networks)

  • 박상봉;박래정;박철훈
    • 한국통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2418-2425
    • /
    • 1994
  • 기울기를 따라가는 방식(gradient descent method)에 바탕을 둔 오류 역전파(EBP : Error Back Propagation) 방법이 가장 널리 사용되는 신경회로망의 학습 방법에서 문제가 되는 지역 최소값(local minima), 느린 학습 시간, 신경망 구조(structure), 그리고 초기의 연결 강도(interconnection weight) 등을 기존의 다층 신경 회로망에 지역적인 학습 능력을 가진 가우시안 포텔샵 네트워크(GPFN : Gaussian Potential Function Networks)를 병렬적으로 부가하여 해결함으로써 지역화된 오류 학습 패턴들이 나타내는 문제에 대하여 학습 성능을 향상시킬 수 잇는 새로운 학습 방법을 제시한다. 함수 근사화 문제에서 기존의 EBP 학습 방법과의 비교 실험으로 제안된 학습 방법이 보다 개선된 일반화 능력과 빠른 학습 속도를 가짐을 보여 그 효율성을 입증한다.

  • PDF

A Study on the Effectiveness of Smart Education Based on Learning Ability

  • Song, JeongBeom
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권9호
    • /
    • pp.165-176
    • /
    • 2016
  • This study developed the learning ability-based smart education program. The effectiveness of the developed materials was investigated using the quantitative-qualitative mixed method, and the process and results of the investigation are as follows. The quantitative investigation was conducted using the non-equivalent pretest-posttest design, in which the smart education method was applied to the experimental group, while the conventional education method was applied to the control group to analyze students' creative problem-solving potential, task concentration, and the variables required for the learning activity. The results showed significantly higher performance in the experimental group over the control group. Regarding data collection in the qualitative investigation, an analysis of the class from the instructor and class consultation logs from the class analyst were collected; the comments on the experience of each class period were collected from students. The results of the analysis of the data suggest that the perception of smart education improved for the instructor, class analyst, and learners as the course progressed.

Knowledge-based learning for modeling concrete compressive strength using genetic programming

  • Tsai, Hsing-Chih;Liao, Min-Chih
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.255-265
    • /
    • 2019
  • The potential of using genetic programming to predict engineering data has caught the attention of researchers in recent years. The present paper utilized weighted genetic programming (WGP), a derivative model of genetic programming (GP), to model the compressive strength of concrete. The calculation results of Abrams' laws, which are used as the design codes for calculating the compressive strength of concrete, were treated as the inputs for the genetic programming model. Therefore, knowledge of the Abrams' laws, which is not a factor of influence on common data-based learning approaches, was considered to be a potential factor affecting genetic programming models. Significant outcomes of this work include: 1) the employed design codes positively affected the prediction accuracy of modeling the compressive strength of concrete; 2) a new equation was suggested to replace the design code for predicting concrete strength; and 3) common data-based learning approaches were evolved into knowledge-based learning approaches using historical data and design codes.

Using Machine Learning Algorithms for Housing Price Prediction: The Case of Islamabad Housing Data

  • Imran, Imran;Zaman, Umar;Waqar, Muhammad;Zaman, Atif
    • Soft Computing and Machine Intelligence
    • /
    • 제1권1호
    • /
    • pp.11-23
    • /
    • 2021
  • House price prediction is a significant financial decision for individuals working in the housing market as well as for potential buyers. From investment to buying a house for residence, a person investing in the housing market is interested in the potential gain. This paper presents machine learning algorithms to develop intelligent regressions models for House price prediction. The proposed research methodology consists of four stages, namely Data Collection, Pre Processing the data collected and transforming it to the best format, developing intelligent models using machine learning algorithms, training, testing, and validating the model on house prices of the housing market in the Capital, Islamabad. The data used for model validation and testing is the asking price from online property stores, which provide a reasonable estimate of the city housing market. The prediction model can significantly assist in the prediction of future housing prices in Pakistan. The regression results are encouraging and give promising directions for future prediction work on the collected dataset.

랜덤 심볼에 기반한 정보이론적 학습법의 스텝 사이즈 정규화 (Step-size Normalization of Information Theoretic Learning Methods based on Random Symbols)

  • 김남용
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.49-55
    • /
    • 2020
  • 랜덤 심볼열을 기반으로 한 정보이론적 학습법 (ITL)은 특정 확률분포를 갖도록 랜덤하게 발생시킨 심볼열을 타겟 데이터로 활용하고, 입력 데이터 사이의 확률분포 거리 최소화를 비용함수로 하여 설계된다. 이 방식의 단점으로, 고정상수를 알고리듬 갱신의 스텝사이즈로 사용하므로 입력 전력의 통계적 추이를 활용할 수 없다. 정보포텐셜 출력(information potential output, IPO)와 연관된 기울기에서는 정보포텐셜 입력(information potential input, IPI)이, 정보포텐셜 오차(information potential error, IPE)와 관련된 기울기에서는 입력자체가 입력으로 작용함을 이 연구에서 밝혀내고, 입력의 전력 추이를 따로 계산하여 스텝사이즈 (step size)를 정규화하도록 제안하였다. 제안된 알고리듬은 충격성잡음과 다중경로 페이딩 환경의 통신시스템 실험에서 기존 방식보다 약 4dB 정도 더 낮은 정상상태 오차 전력, 약 2배 이상 빠른 수렴속도를 나타냈다.