• Title/Summary/Keyword: potential learning

Search Result 1,134, Processing Time 0.029 seconds

Spatio-temporal potential future drought prediction using machine learning for time series data forecast in Abomey-calavi (South of Benin)

  • Agossou, Amos;Kim, Do Yeon;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.268-268
    • /
    • 2021
  • Groundwater resource is mostly used in Abomey-calavi (southern region of Benin) as main source of water for domestic, industrial, and agricultural activities. Groundwater intake across the region is not perfectly controlled by a network due to the presence of many private boreholes and traditional wells used by the population. After some decades, this important resource is becoming more and more vulnerable and needs more attention. For a better groundwater management in the region of Abomey-calavi, the present study attempts to predict a future probable groundwater drought using Recurrent Neural Network (RNN) for future groundwater level prediction. The RNN model was created in python using jupyter library. Six years monthly groundwater level data was used for the model calibration, two years data for the model test and the model was finaly used to predict two years future groundwater level (years 2020 and 2021). GRI was calculated for 9 wells across the area from 2012 to 2021. The GRI value in dry season (by the end of March) showed groundwater drought for the first time during the study period in 2014 as severe and moderate; from 2015 to 2021 it shows only moderate drought. The rainy season in years 2020 and 2021 is relatively wet and near normal. GRI showed no drought in rainy season during the study period but an important diminution of groundwater level between 2012 and 2021. The Pearson's correlation coefficient calculated between GRI and rainfall from 2005 to 2020 (using only three wells with times series long period data) proved that the groundwater drought mostly observed in dry season is not mainly caused by rainfall scarcity (correlation values between -0.113 and -0.083), but this could be the consequence of an overexploitation of the resource which caused the important spatial and temporal diminution observed from 2012 to 2021.

  • PDF

Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry

  • Kyung Won Kim;Jimi Huh ;Bushra Urooj ;Jeongjin Lee ;Jinseok Lee ;In-Seob Lee ;Hyesun Park ;Seongwon Na ;Yousun Ko
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.388-399
    • /
    • 2023
  • Gastric cancer remains a significant global health concern, coercing the need for advancements in imaging techniques for ensuring accurate diagnosis and effective treatment planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, particularly for diagnostic imaging and body morphometry. This review article offers a comprehensive overview of the recent developments and applications of AI in gastric cancer imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of patient management. Additionally, we explored the application of AI body morphometry specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization holds significant promise for understanding postoperative changes and optimizing patient outcomes. Furthermore, we examine the current state of AI techniques for the prognosis of patients with gastric cancer. These prognostic models leverage AI algorithms to predict long-term survival outcomes and assist clinicians in making informed treatment decisions. However, the implementation of AI techniques for gastric cancer imaging has several limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge technologies into routine clinical practice, ultimately improving patient care and outcomes in the fight against gastric cancer.

Predicting Prognosis in Patients with First Episode Psychosis Using Mismatch Negativity : A 1 Year Follow-up Study (초발 정신증 환자에서 Mismatch Negativity를 이용한 1년 간의 예후 예측 연구)

  • Jang, Moonyoung;Kim, Minah;Lee, Tak Hyung;Kwon, Jun Soo
    • Korean Journal of Schizophrenia Research
    • /
    • v.20 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Objectives : It has been shown that early intervention is crucial for favorable outcome in patients with schizophrenia. However, development of biomarkers for predicting prognosis of psychotic disorder still requires more research. In this study, we aimed to investigate whether baseline mismatch negativity (MMN) predict prognosis in patients with first episode psychosis (FEP). Methods : Twenty-four patients with FEP and matched healthy controls (HCs) were examined with MMN at baseline, and their clinical status were re-assessed after 1 year. Repeated-measures analysis of variance was performed to compare baseline MMN between the two groups. Multiple regression analysis was used to identify factors predicting prognosis in FEP patients during the follow-up period. Results : MMN amplitudes at baseline were significantly reduced in patients with FEP compared to healthy controls. In the multiple regression analysis, baseline MMN amplitude significantly predicted later improvement of performances on digit span and delayed recall of California Verbal Learning Test. However, baseline MMN did not predicted improvement of clinical symptoms. Conclusion : These results indicate that MMN may be a possible predictor of improvement in cognitive functioning in patients with FEP. Future study with larger sample and longer follow-up period would be needed to confirm the findings of the current study.

The Effects of Internal Characteristics of Startups on Corporate Performance through Organizational Commitment (스타트업 내부 특성이 조직 결속을 통해 기업 성과에 미치는영향)

  • Chanuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.635-647
    • /
    • 2023
  • In the pursuit of sustained innovation within industries, the consistent emergence of high-growth potential startups is imperative. Despite the government's implementation of diverse investment-based policies aimed at fostering startup initiation, the inherent probability of post-establishment failure for startups remains substantial. This study examines the impact of internal factors on organizational commitment and corporate performance in startups. It emphasizes the significance of learning and networking orientation for commitment across various organizational aspects. Innovativeness affects emotional and normative commitment but not continuance commitment. Financial attributes and global orientation influence continuance commitment, while affective and continuance commitment significantly impact startup performance. Normative cohesion, however, does not significantly affect performance. These findings offer insights for optimizing human resource utilization in startups, benefiting both companies and governments in the evolving startup landscape.

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

Moderating Role of Perceived Task Difficulty in Arousing State Anxiety When Confronting Science Questions (과학 문제 대면 상황에서 상태불안이 유발될 때 학생이 인지한 과제난이도의 조절효과)

  • Kang, Jihoon
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.513-522
    • /
    • 2023
  • There is a lack of empirical research on the level of students' state anxiety according to their perceived task difficulty when confronting science questions. This study seeks to investigate whether perceived task difficulty moderates the process of arousing students' state anxiety in science learning. In pursuit of this objective, we engaged 410 fifth- and sixth-grade elementary school students (186 fifth graders; 194 females) in solving two science questions. We then verified the moderating effect of perceived task difficulty on the relationship between science anxiety and state anxiety arousal when confronting science questions using the PROCESS Macro Model 1. Results confirmed that science anxiety and perceived task difficulty significantly and positively predicted state anxiety. Notably, perceived task difficulty had a significant moderating effect on the process of arousing state anxiety, where lower perceived task difficulty led to a greater increase in state anxiety after confronting the science questions. We discuss the implications of the findings for science education and propose potential directions for future research.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Autoencoder-Based Defense Technique against One-Pixel Adversarial Attacks in Image Classification (이미지 분류를 위한 오토인코더 기반 One-Pixel 적대적 공격 방어기법)

  • Jeong-hyun Sim;Hyun-min Song
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1087-1098
    • /
    • 2023
  • The rapid advancement of artificial intelligence (AI) technology has led to its proactive utilization across various fields. However, this widespread adoption of AI-based systems has raised concerns about the increasing threat of attacks on these systems. In particular, deep neural networks, commonly used in deep learning, have been found vulnerable to adversarial attacks that intentionally manipulate input data to induce model errors. In this study, we propose a method to protect image classification models from visually imperceptible One-Pixel attacks, where only a single pixel is altered in an image. The proposed defense technique utilizes an autoencoder model to remove potential threat elements from input images before forwarding them to the classification model. Experimental results, using the CIFAR-10 dataset, demonstrate that the autoencoder-based defense approach significantly improves the robustness of pretrained image classification models against One-Pixel attacks, with an average defense rate enhancement of 81.2%, all without the need for modifications to the existing models.

A Study on Object Detection and Warning Model for the Prevention of Right Turn Car Accidents (우회전 차량 사고 예방을 위한 객체 탐지 및 경고 모델 연구)

  • Sang-Joon Cho;Seong-uk Shin;Myeong-Jae Noh
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.33-39
    • /
    • 2023
  • With a continuous occurrence of right-turn traffic accidents at intersections, there is an increasing demand for measures to address these incidents. In response, a technology has been developed to detect the presence of pedestrians through object detection in CCTV footage at right-turn areas and display warning messages on the screen to alert drivers. The YOLO (You Only Look Once) model, a type of object detection model, was employed to assess the performance of object detection. An algorithm was also devised to address misidentification issues and generate warning messages when pedestrians are detected. The accuracy of recognizing pedestrians or objects and outputting warning messages was measured at approximately 82%, suggesting a potential contribution to preventing right-turn accidents

Implementation of a Mobile App for Companion Dog Training using AR and Hand Tracking (AR 및 Hand Tracking을 활용한 반려견 훈련 모바일 앱 구현)

  • Chul-Ho Choi;Sung-Wook Park;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.927-934
    • /
    • 2023
  • With the recent growth of the companion animal market, various social issues related to companion animals have also come to the forefront. Notable problems include incidents of dog bites, the challenge of managing abandoned companion animals, euthanasia, animal abuse, and more. As potential solutions, a variety of training programs such as companion animal-focused broadcasts and educational apps are being offered. However, these options might not be very effective for novice caretakers who are uncertain about what to prioritize in training. While training apps that are relatively easy to access have been widely distributed, apps that allow users to directly engage in training and learn through hands-on experience are still insufficient. In this paper, we propose a more efficient AR-based mobile app for companion animal training, utilizing the Unity engine. The results of usability evaluations indicated increased user engagement due to the inclusion of elements that were previously absent. Moreover, training immersion was enhanced, leading to improved learning outcomes. With further development and subsequent verification and production, we anticipate that this app could become an effective training tool for novice caretakers planning to adopt companion animals, as well as for experienced caretakers.