• Title/Summary/Keyword: potential evaporation

Search Result 178, Processing Time 0.027 seconds

Study of space charge of metal/copper(II)-phthalocyanine interface (금속/copper(II)-phthalocyanine interface에서의 space charge 연구)

  • Park, Mie-Hwa;Lim, Eun-Ju;Yoo, Hyun-Jun;Lee, Kie-Jin;Cha, Deok-Joon;Lee, Young-San
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.526-530
    • /
    • 2004
  • We report the space charge and the surface potential of the interface between metal and CuPc according to isotropic property and different metal by measuring the microwave reflection coefficients $S_{11}$ of copper(II)-phthalocyanine(CuPc) thin films by using a near-field microwave microscope(NSMM) in order to understand. CuPc thin films were prepared on gold and aluminium substrates using a thermal evaporation method. Two kinds of CuPc thin films were prepared. One was deposited on preheated substrate at $150^{\circ}C$ and the other was annealed after deposition by using thermal evaporation methods. The microwave reflection coefficients $S_{11}$ of CuPc thin films were changed by the dependence on the heat treatment conditions. By comparing reflection coefficient $S_{11}$ we measured electrical conductivity of CuPc thin films and studied this results with respect to the surface potential and space charge of the interface between metal and CuPc thin films.

  • PDF

Seasonal Variations of the Evaporation in Korea (증발량의 시공적 변화)

  • 이광호;김문일
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.243-251
    • /
    • 1985
  • The distributions of the copper plated(small) pan evaporation in both space and time are analysed with the data observed, and the lake and the potential evaportranspiration are estimated from the climatological data. These value are compared with each other and to the precipitation for deducing the seasonal amounts and variations of water budgets in the selected basins and regions. The meteorological factor which is closely associated with the small pan evaporation are hardly recognizable when they are used as the monthly values. The relationships among the small pan, the Class A pan and the lake evaporation are well correlated with each other with correlation coefficient of above 0.90, so it may be possible to derve other evaporations from knowing one evaporation. The ratio of the Class A pan and the lake evaporation to the small pan evaportion in annual are about 73% and 55%, repectively, except the mountaineous area where the values are about 10% less than those. The evapotranspiration reach about 40∼60% of the annumal precipitation, but in May and October two values are nearly same. The frequencies of the monthly evaportion in class intervals in the regions are also provided.

  • PDF

Kinetic Model on the Vacuum Deposition (眞空 蒸着에 관한 速度論的 모델)

  • Kim, Dae-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.2
    • /
    • pp.51-58
    • /
    • 1986
  • A theoretical model was proposed to predict the rate of particles impinging on the negatively biased substrate and the total kinetic energy per unit time. The model takes into an account of kinetic theory based on Maxwell statistics and elementary plasma theory, incorporated with Hertz-Knudsen's evaporation theory. It is found that as the bias potential increases the ion flux and kinetic energy increases to a value above which the effect of potential is insignificant.

  • PDF

Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential

  • Wang, Zetao;Guo, Kailun;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3117-3129
    • /
    • 2022
  • Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520-600 K (the startup of the heat pipe), the h has approached 5-6 W m-2 K-1 while liquid film thickness is in 11-13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.

Preparation and Properties of Soybean Lecithin Liposome using Supercritical Reverse Phase Evaporation Method (초임계 역상 증발법을 이용한 대두 레시틴 리포좀의 제조 및 특성)

  • Lee, Mi-Jin;Jeong, Noh-Hee;Jeang, Boo-Sick
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • Soybean lecithin liposomes composed phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol and phosphatidic acid were prepared by using the previously developed supercritical reverse phase evaporation method. The effect of phospholipid composition on the formation of liposomes and physicochemical properties were examined by means of trapping efficiency measurements, transmission electron microscopy, dynamic light scattering and zeta potential measurements. The trapping efficiency of liposomes for D-(+)-glucose made of CNA-Ⅰ which contains approximately 95% phosphatidyl choline is higher than that of CNA-II and CNA-O which contain approximately 32% phosphatidyl choline. However there is no any difference between the trapping efficiency of liposomes for D-(+)-glucose made of CNA-II which has saturated hydrocarbons tails and that of liposomes made of CNA-O which has unsaturated hydrocarbon chains. The electron micrographs of liposomes made of CNA-II and CNA-O show small spherical liposomes with diameter of $0.1\sim0.25{\mu}m$, while that of CNA-I shows large unilamellar liposomes with diameter of $0.2\sim1.2{\mu}m$. These results clearly show that phospholipid structure of phosphatidylcholine allows an efficient preparation of large unilamellar liposomes and a high trapping efficiency for water soluble substances. Liposomes made of CNA-II and CNA-O remained well-dispersed for at least 14 days, while liposome suspension made of CNA-I separated in two phase at 14 days due to aggregation and fusion of liposomes. The dispersibility of liposomes made of CNA-I is lower than that of CNA-II and CNA-O due to the smallar zeta potential of CNA-I.

Wetness or Warmth, Which is the Dominant Factor for Vegetation?

  • Suzuki, Rikie;Xu, Jianqing;Motoya, Ken
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.147-149
    • /
    • 2003
  • The wetness, a function of precipitation and temperature etc, and the warmth, a function of temperature, are the dominant factor for global vegetation distribution. This paper employs the normalized difference vegetation index (NDVI), warmth index (WAI), and wetness index (WEI), and focuses on an essential climate-vegetation relationship at global scale. The NDVI was acquired from ‘Twenty-year global 4-minute AVHRR NDVI dataset.’ The WEI is defined as the fraction of the precipitation to the potential evaporation. The WAI was calculated by accumulating the monthly mean temperature of the portion exceeded 5$^{\circ}C$ throughout the year. Meteorological data for the WEI and WAI calculation were obtained from the ISLSCP CD-ROM. All analyses were conducted for 1 ${\times}$ 1 degree grid box on the terrestrial area of the Earth, and on annual value basis averaged in 1987 and 1988. The result of analyses demonstrated that there are two regimes in their relations, that is, a regime in which NDVIs vary depending on the WEI, and a regime in which NDVIs vary depending on the WAI. These two regimes appeared to correspond to the wetness dominant and warmth dominant vegetation, respectively. The geographical distributions of two regimes were mapped. Most of the world vegetation is categorized into wetness dominant, while warmth dominant vegetation is seen in the high-latitude area mainly to the north of 60$^{\circ}$N in the Northern Hemisphere and high-altitude areas.

  • PDF

Spatial Estimation of Priestley-Taylor Based Potential Evapotranspiration Using MODIS Imageries: the Nak-dong river basin (MODIS 인공위성 이미지를 이용한 Priestley-Taylor 기반 공간 잠재 증발산 산정: 낙동강 유역을 중심으로)

  • Sur, Chanyang;Lee, Jongjin;Park, Jaeyoung;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • The evapotranspiration (ET) is one of the most important factor in the hydrological cycle. In this study, remote sensing based ET algorithm using Moderate Resolution Imaging Spectroradiometer (MODIS) was considered. Then, Priestley-Taylor algorithm was used for estimation of potential evapotranspiration in South Korea, and its spatial distribution was analyzed. Overall applicability between estimated potential evapotranspiration and weather station pan evaporation in Nakdong river basin was represented. The results using small pan showed that correlation coefficient in Pohang and Moonkyung Station was 0.70 and 0.55, respectively. However, the results using large pan showed correlation coefficient in Pohang and Moonkyung Station was 0.62 and 0.52, respectively.

Synthesis and Characterization of Silver Nanofluid Using Pulsed Wire Evaporation Method in Liquid-Gas Mixture (액상/기상중 전기선 폭발법을 이용한 은 나노유체의 제조 및 특성평가에 관한 연구)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.468-472
    • /
    • 2009
  • The silver nanofluids were synthesized by the pulsed wire evaporation (PWE) method in a liquid-gas mixture. The size and microstructure of nanoparticles in the deionized water were investigated by a particle size analyzer (PSA), transmission electron microscope (TEM), and scanning electron microscope (SEM). Also, the synthesized nanofluids were investigated in order to assess the stability of dispersion of nanofluid by the zetapotential analyzer and dispersion stability analyzer. The results showed that the spherical silver nanoparticle formed in the deionized water and mean particle size was about 50 nm. Also, when explosion times were in the range of 20$\sim$200 times, the absolute value of zeta potential was less than -27 mV and the dispersion stability characteristic of low concentration silver nanofluid was better than the high concentration silver nanofluid by turbiscan.

On the Surface Moisture Availability Parameters to Estimate the Surface Evaporation (증발량 추정을 위한 지표면 가용 수분 계수)

  • Jin, Byoung-Hwa;Hwang, Soo-Jin
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.41-41
    • /
    • 1995
  • In order to discuss the differences among the SMP(Surface Moisture Availability Parameter), by previous researchers on the basis of their own theoretical and empirical background, we assessed the SMP according to the soil types and volumetric soil water contents. The results are as follows. There are differences among all the five SMAPs. There''s a tendency that the larger grain size, the higher value of parameters. And they divided into two groups for their value: one group has parameters with exponential function and the other with cosine and linear function. The maximum difference between the two groups appears when the volumetric soil water contents are 0.07$m^3m^{-3}$ for sand, 0.l1$m^3m^{-3}$ for loam, 0.12 for clay, and 0.13$m^3m^{-3}$ for silt loam. So, these differences must be considered when we estimate the surface evaporation rate. From field data, the paddy field soil around Junam reservoir is classified as a silt has high wetness, 0.56. So, the parameter obtained from the field measurement is much higher than that of Clapp and Hornberger(1978)''s Table. This study treated the SMP for a certain point of time in winter season. But if we measured the soil water contents continuously, we could obtain better time-dependent parameter.

Synthesis of Nickel and Copper Nanopowders by Plasma Arc Evaporation

  • Cho, Young-Sang;Moon, Jong Woo;Chung, Kook Chae;Lee, Jung-Goo
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.411-424
    • /
    • 2013
  • In this study, the synthesis of nickel nanoparticles and copper nanospheres for the potential applications of MLCC electrode materials has been studied by plasma arc evaporation method. The change in the broad distribution of the size of nickel and copper nanopowders is successfully controlled by manifesting proper mixture of gas ambiance for plasma generation in the size range of 20 to 200 nm in diameter. The factors affecting the mean diameter of the nanopowder was studied by changing the composition of reactive gases, indicating that nitrogen enhances the formation of larger particles compared to hydrogen gas. The morphologies and particle sizes of the metal nanoparticles were observed by SEM, and ultrathin oxide layers on the powder surface generated during passivation step have been confirmed using TEM. The metallic FCC structure of the nanoparticles was confirmed using powder X-ray diffraction method.