• Title/Summary/Keyword: potential efficacy

Search Result 1,126, Processing Time 0.031 seconds

Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases

  • Kim, Seung Hyun;Oh, Ki-Wook;Jin, Hee Kyung;Bae, Jae-Sung
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.545-546
    • /
    • 2018
  • With emerging evidence on the importance of non-cell autonomous toxicity in neurodegenerative diseases, therapeutic strategies targeting modulation of key immune cells. including microglia and Treg cells, have been designed for treatment of ALS and other neurodegenerative diseases. Strategy switching the patient's environment from a pro-inflammatory toxic to an anti-inflammatory, and neuroprotective condition, could be potential therapy for neurodegenerative diseases. Mesenchymal stem cells (MSCs) regulate innate and adaptive immune cells, through release of soluble factors such as $TGF-{\beta}$ and elevation of regulatory T cells (Tregs) and T helper-2 cells (Th2 cells), would play important roles, in the neuroprotective effect on motor neuronal cell death mechanisms in ALS. Single cycle of repeated intrathecal injections of BM-MSCs demonstrated a clinical benefit lasting at least 6 months, with safety, in ALS patients. Cytokine profiles of CSF provided evidence that BM-MSCs, have a role in switching from pro-inflammatory to anti-inflammatory conditions. Inverse correlation of $TGF-{\beta}1$ and MCP-1 levels, could be a potential biomarker to responsiveness. Thus, additional cycles of BM-MSC treatment are required, to confirm long-term efficacy and safety.

ACTION POTENTIAL DIFFERENCES AND REGENERATION EFFECT AFTER MICRONEURAL SUTURE TECHNIQUE AND FIBRIN ADHESIVE TECHNIQUE IN RAT SCIATIC NERVE (신경문합술과 피브린접합술 후 활동전위차 및 신경재생 효과)

  • Jung, Tae-Young;Kim, Uk-Kyu;Chung, In-Kyo;Shin, Sang-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • The purpose of this study was to compare clinical availability of fibrin adhesive technique with microneural suture technique. We applicated fibrin adhesive technique and microneural suture technique on cut sciatic nerve in rat and used to Compound muscle action potential of rat thigh muscle compartment and histologic finding for comparision of clinical availability. The results were as following. 1. Using latency and amplitude in Compound muscle action potential test, we compared microneural suture technique with fibrin adhesive technique for nerve regeneration effect. the means was slightly different between two method. but there's no statistically significant differences. 2. Histologic finding was similar in microneural suture technique and fibrin adhesive technique for regeneration of axon and myelin sheath in destruction site after nerve anastomosis. These results showed that the efficacy of fibrin adhesive technique was similar to that of conventional microneural suture technique. Moreover, fibrin adhesive technique is decreased operating time and imporved of incapability of accessment in conventional suture technique. Therefore this technique is a useful method to nerve anastomosis in nerve enervation and neurotransplantation.

Predatory Nematodes and Their Potential in Biological Control of Plant Parasitic Nematodes in Soil (포식선충의 토양중 식물기생선충의 생물학적 방제 이용 가능성)

  • Khan, Zakaullah;Kim, Young-Ho
    • The Korean Journal of Soil Zoology
    • /
    • v.10 no.1_2
    • /
    • pp.55-64
    • /
    • 2005
  • Predatory nematodes are ubiquitous and feed on soil microorganisms including plant parasitic nematodes. They reduce populations of plant parasitic nematodes in virtually all soils because of their constant association with plant parasitic nematodes in the rhizosphere. Predatory potential of several species of predacious nematodes, belonging to the orders Mononchida, Diplogasterida, Dorylaimida and Aphelenchida, have been studied in detail on plant parasitic nematodes but most of the studies were based on in vitro experiments. A review of progress on the use of predatory nematodes as biological control agents of plant parasitic nematodes reveals that advocacy for predatory nematodes dates back to the early $20^{th}$ century; nevertheless, their potential has begun to be studied in recent years. Information on the efficacy of predatory nematodes under field conditions is lacking; however, some predatory nematodes have given very promising results against plant parasitic nematodes. This article summarizes research progress to date on predatory nematodes and discusses about their possible use in the management of plant parasitic nematodes.

  • PDF

Efficient Learning Algorithm using Structural Hybrid of Multilayer Neural Networks and Gaussian Potential Function Networks (다층 신경회로망과 가우시안 포텐샬 함수 네트워크의 구조적 결합을 이용한 효율적인 학습 방법)

  • 박상봉;박래정;박철훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2418-2425
    • /
    • 1994
  • Although the error backpropagation(EBP) algorithm based on the gradient descent method is a widely-used learning algorithm of neural networks, learning sometimes takes a long time to acquire accuracy. This paper develops a novel learning method to alleviate the problems of EBP algorithm such as local minima, slow speed, and size of structure and thus to improve performance by adopting other new networks. Gaussian Potential Function networks(GPFN), in parallel with multilayer neural networks. Empirical simulations show the efficacy of the proposed algorithm in function approximation, which enables us to train networks faster with the better generalization capabilities.

  • PDF

A Novel 3-(8-Chloro-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-yl)phenyl Acetate Skeleton and Pharmacophore Model as Glucagon-like Peptide 1 Receptor Agonists

  • Gong, Young-Dae;Cheon, Hyae-Gyeong;Lee, Tae-Ho;Kang, Nam-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3760-3764
    • /
    • 2010
  • We screened 10,000 heterocyclic small molecules and identified a novel hit core skeleton of 3-(8-chloro-6-(trifluoromethyl) imidazo[1,2-a]pyridine-2-yl)phenyl acetate derivatives. It has been selected as a potential glucagon-like peptide 1 receptor (GLP-1R) activator and demonstrated its effects in increasing GLP-1 secretion, and thereby increasing the glucose responsiveness in both in vitro and pharmacology analyses. Further studies are currently underway to optimize the potency and selectivity of 3-(8-chloro-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-yl)phenyl acetate derivatives (hit compounds 2 and 8), and address their in vivo efficacy and therapeutic potential. These molecules may serve as useful evidence showing that compounds with a 3-(8-chloro-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-yl)phenyl acetate moiety are selective GLP-1R agonists, and have potential as anti-diabetic treatment agents.

The Antidermatophytic Potential of the Marine Isolate of Aspergillus sp. Collected from South Coast of Korea

  • Bajpai, Vivek K.;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.80-85
    • /
    • 2008
  • This study was carried out to assess the antidermatophytic potential of the ethyl acetate(EtOAc) extract of the marine isolate of Aspergillus sp.. The fungus was isolated by serial dilution, and was identified Aspergillus sp.. The EtOAc extract of the fungus was examined to evaluate the antidermatophytic efficacy against the fungal pathogens infecting human skin using the disc diffusion and MIC(minimum inhibitory concentration) determination methods. The EtOAc extract($5{\mu}l\;disc^{-1}$) was considered to have the antidermatophytic activity based on the inhibition percentage of the mycelial growth of the fungi tested such as Trichophyton mentagrophytes KCTC 6085, Microsporum canis KCTC 6591, Microsporum canis KCTC 6348, Trichophyton rubrum KCTC 6352, Microsporum canis KCTC 6349 and Trichophyton mentagrophytes KCTC 6316. The percentage of the inhibition ranged from 54% to 81, and the MIC obtained was 62.5, 62.5, 250, 125, 125, and $125{\mu}g\;ml^{-1}$, respectively. The extract had a strong detrimental effect on the spore germination of the tested skin infectious pathogens. These findings strongly support the role of the ethyl acetate extract as a potential antidermatophytic agent.

Therapeutic Efficacy of Methanol Extract of Bidens tripartita in HT22 Cells by Neuroprotective Effect

  • Yerim Son;Choong Je Ma
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • Oxidative stress brings about apoptosis through various mechanisms. In particular, oxidative stress in neuronal cells can causes a variety of brain diseases. This study was conducted to investigate the effect of Bidens tripartita on oxidative stress in neuronal cells. B. tripartita has traditionally been used in Russia as a medicine for diseases such as rhinitis, angina and colitis. Over-production of glutamate induces oxidative stress. When the oxidative stress occurs in the cells, reactive oxygen species (ROS) and Ca2+ increase. In addition, the abrupt decline of mitochondrial membrane potential and the decrease of glutathione related enzymes such as glutathione reductase (GR) and glutathione peroxidase (GPx) are also observed. The samples used in the experiment showed cytoprotective effect in the MTT assay. It also lowered the ROS and Ca2+ level, and increased degree of mitochondrial membrane potential, GR and GPx. As a result, B. tripartita had a positive effect against oxidative stress. Thus, it is expected to have potential for treatment and prevention of degenerative brain diseases such as Alzheimer's disease.

Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells

  • Ji-Sun Lee;Ho-Young Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.266-275
    • /
    • 2024
  • Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.

Antioxidant Activity and Whitening Efficacy of Makgeolli Fractions (막걸리 분획물의 항산화활성 및 미백효능)

  • Park, Kyung-won;Kwak, Da-hee;Kwon, Hye-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.571-577
    • /
    • 2017
  • This study aimed at evaluating the potential of makgeolli, which is widely consumed as beverage, as a functional cosmetic ingredient, based on analyses on its antioxidant activity and tyrosinase activity inhibitory effect. The sample was extracted by concentrating the suspension obtained after adding MeOH (3 L) to the residue of a commercial makgeolli and then adding EtOAc (3 L) to the concentrate, which was subjected to fractionation. The upper layer of the fractions was used as the final sample. In MTT assay assessments, no cytotoxicity was observed at a concentration range of 10 to $1,000{\mu}g/mL$; the antioxidant activity of the extract showed a concentration-dependent tendency and it had a high activity with an $EC_{50}$ of 7.008 mg/mL. Also, in a tyrosinase activity inhibitory effect assessment, the extract showed an $IC_{50}$ value of 39.22 mg/mL. These results confirmed that this sample has potential as a functional cosmetic ingredient.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.