• Title/Summary/Keyword: potassium permanganate oxidation

Search Result 22, Processing Time 0.028 seconds

Effects of ultrasound coupled with potassium permanganate pre-treatment of sludge on aerobic digestion

  • Demir, Ozlem
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.251-262
    • /
    • 2016
  • The biodegradability and decomposition efficiencies increase with the pre-treatment of sludge in a digestion process. In this study, the feasibility of ultrasound coupled with potassium permanganate oxidation as a disintegration method and digestibility of aerobic reactor fed with disintegrated sludge with ultrasound coupled potassium permanganate were investigated. The first stage of the study focused on determining the optimum condition for ultrasonic pre-treatment for achieving better destruction efficiency of sludge. The second part of the study, the aerobic digestibility of sludge disintegrated with ultrasound and potassium permanganate oxidation alone and combined were examined comparatively. The results showed that when 20 min of ultrasonic pre-treatment applied, the specific energy output was 49384 kJ/kgTS with disintegration degree of 58.84%. During the operation of aerobic digester, VS/TS ratios of digesters fed with disintegrated sludge decreased indicating that disintegration methods could obviously enhance aerobic digestion performance. The highest reduction in volatile solids was 75% in the digester fed with ultrasound+potassium permanganate disintegrated sludge at the end of the operation compared to digester fed with raw sludge. Total Nitrogen (TN) and Total Phosphorus (TP) levels in sludge supernatant increased with this combined method significantly. Besides, it promoted the production of ${\bullet}OH$, thus enhancing the release of Carbon (C), Nitrogen (N) and Phosphorus (P) from the sludge. Disintegration with all methods used in this study could not improve Capillary Suction Time (CST) reduction in disintegrated digesters during the operation. The results demonstrated that the combined ultrasound treatment and potassium permanganate oxidation method improves the biodegradability compared to control reactor or their single application.

과망간산을 이용한 지하수내 TCE 제거효과 평가

  • Yang Seung-Gwan;Go Seok-O
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.53-56
    • /
    • 2005
  • A Laboratory study was conducted to evaluate the kinetics of oxidation of trichloroethylene (TCE) in groundwater by potassium permanganate $(KMnO_4)$, Consumption of permanganate by TCE and aquifer materials was also evaluated to obtain an appropriate injection rate of $KMnO_4$. TCE degradation by $KMnO_4$ in the absence of aquifer material showed effective with pseudo-first order rate constant, $k_{obs}=1.8110^{-3}\;s^{-1}\;at\;KMnO_4=500mg/L$. TCE oxidation by $KMnO_4$ was found to be second order reaction and the rate constant, $k=0.65{\pm}0.08\;M^{-1}s^{-1}$, was independent of pH changes. $KMnO_4$ consumption rate by groundwater sampled from field site was not significant, indicating that groundwater containing negligible amount of dissolved organic matter does not have any influence on the $KMnO_4$ degradation. Meanwhile, aquifer materials from field site were actively reacted with permanganate, resulting in the significant consumption of $KMnO_4$. It might be attributed to the existence of metal oxides in aquifer materials, Based on the rate constants obtained from this study, appropriate injection rate of permanganate and TCE removal rate in groundwater could be estimated.

  • PDF

Oxidative Synthesis of Benzoylpteridines from Benzylpteridines by Potassium Permanganate

  • Kim, Yeon Hui;Gang, Yong Han;Baek, Dae Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.141-144
    • /
    • 2001
  • 6- and 7-Benzylpteridine derivatives have been converted to the corresponding 6- and 7-benzoylpteridines by the oxidation reaction with KMnO4. The newly synthesized compounds have been characterized by pKa determinations, UV, and 1H-NMR spectra.

Oxidative Degradation Kinetics of Trichloroethylene in Groundwater by Permanganate (과망간산을 이용한 지하수내 TCE 분해의 동력학적 해석)

  • Yang, Seung-Guan;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.397-401
    • /
    • 2006
  • A laboratory study was conducted to evaluate the kinetics of oxidation of trichloroethylene(TCE) in groundwater by potassium permanganate($KMnO_4$). Consumption of permanganate by TCE and aquifer material was also evaluated to obtain an appropriate injection rate of $KMnO_4$. TCE degradation by $KMnO_4$ in the absence of aquifer material was effective with a pseudo-first order rate constant, $k_{obs}=5.24{\times}10^{-3}s^{-1}\;at\;KMnO_4=500mg/L$. TCE oxidation by $KMnO_4$ was found to be second order reaction and the rate constant, $k=0.65{\pm}0.08M^{-1}s^{-1}$. Meanwhile, aquifer materials from the field site were actively reacted with permanganate, resulting in the significant consumption of $KMnO_4$. It might be attributed to the existence of metal oxides in the aquifer materials.

Spectrophotometric and Kinetic Determination of Some Sulphur Containing Drugs in Bulk and Drug Formulations

  • Walash, M.I.;El-Brashy, A.M.;Metwally, M.S.;Abdelal, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.517-524
    • /
    • 2004
  • Two simple and sensitive spectrophotometric methods were developed for the determination of carbocisteine, penicillamine, ethionamide and thioctic acid in bulk and in their pharmaceutical preparations using alkaline potassium permanganate as an oxidizing agent. The first one involves determination of ethionamide and thioctic acid by spectrophotometric investigation of the oxidation reaction of the two drugs. The second method involves determination of carbocisteine and penicillamine by kinetic studies of the oxidation reaction of these two drugs at room temperature for a fixed time of 20 minutes. The absorbance of the colored manganate ions was measured at 610 nm in both methods. 1-10 ${\mu}$g/mL of ethionamide and thioctic acid could be etermined by the spectrophotometric method with detection limits of 0.11 and 0.089 ${\mu}$g/mL for the two drugs respectively. 2-10 ${\mu}$g/mL of carbocisteine and penicillamine could be determined by the kinetic method with detection limits of 0.14 and 0.21 ${\mu}$g/mL respectively. The two methods were successfully applied for the determination of these drugs in their dosage forms.

Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution (과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가)

  • Kim, Min-Jeong;Kim, Hyoung-Chan;Yoon, Seog-Young;Jung, Uoo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

Effect of Potassium Permanganate on Corrosion Behavior of Magnesium Alloy Prepared by Micro-Arc Oxidation (마이크로 아크 산화처리된 마그네슘 합금의 부식특성에 미치는 과망간산칼륨의 영향)

  • Ko, Young Gun;Lee, Kang Min;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.724-729
    • /
    • 2010
  • The effect of potassium permanganate ($KMnO_4$) in an electrolyte on the corrosion performance of magnesium alloy coated by micro-arc oxidation (MAO) has been investigated in this study. For this purpose, MAO coating was carried out on the present sample under AC condition in an alkaline silicate electrolyte with and without $KMnO_4$. Irrespective of the addition of $KMnO_4$, it was found from structural observation that the ceramic coating layers consisted of inner and outer layers. In the sample processed in the electrolyte with $KMnO_4$, the outer layer became dense and even contained a number of $Mn_2O_3$ atoms, resulting in high corrosion resistance. Based on the results of a potentiodynamic polarization test, it was confirmed that the coating layer formed in the electrolyte with $KMnO_4$exhibited better corrosion resistance than that without $KMnO_4$. The high corrosion resistance of the MAO-treated magnesium alloy was explained in relation to the equivalent circuit model.

Spectrophotometric Determination of Aminoglycoside Antibiotics Based on their Oxidation by Potassium Permanganate (과망간산포타슘에 의한 산화에 바탕을 둔 아미노글리코사이드 항생제의 분광광도법적 정량)

  • El-Didamony, A. M.;Ghoneim, A. K.;Amin, A. S.;Telebany, A. M.
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.298-306
    • /
    • 2006
  • A rapid, simple and sensitive validated spectrophotometric methods have been described for the assay of neomycin and streptomycin either in pure form or in pharmaceutical formulations. The proposed methods were based on the oxidation of the studied drugs by a known excess of potassium permanganate in acidic medium and estimating the unreacted permanganate with amaranth dye (method A), acid orange II (method B), indigocarmine (method C), and methylene blue (method D), in the same acid medium at a suitable lmax=521, 485, 610 and 664 nm, respectively. Beers law is obeyed in the concentration range of 5-10 and 2-7 mg mL-1 for neomycin and streptomycin, respectively. The apparent molar absorptivity and sandell sensitivity values are in the range 5.47-6.20104, 2.35-2.91105 L mol-1 cm-1 and 7.57-8.59, 5.01-6.2 ng cm-2 for neomycin and streptomycin, respectively. Different variables affecting the reaction were studied and optimized. The proposed methods were applied successfully to the determination of the examined drugs either in a pure or pharmaceutical dosage forms with good accuracy and precision. No interferences were observed from excipients and the results obtained were in good agreement with those obtained using the official methods.