• 제목/요약/키워드: potassium ions

검색결과 191건 처리시간 0.025초

흰쥐의 전해질 전위에 미치는 마그네슘의 영향 (Effect of Magnesium on the Electrolytes Distribution and Transport in Mice)

  • 정영태;남현근
    • 한국식품영양과학회지
    • /
    • 제11권2호
    • /
    • pp.27-30
    • /
    • 1982
  • 흰쥐에 마그네슘을 첨가 사육하여 전해질 분포에 미치는 영향을 조사하였든 바 다음과 같은 결과(結果)를 얻었다. 1. 성장은 대조군(對照群)에 비하여 실험군(實驗群)의 경우 마그네슘을 0.4 mg 첨가 사육시킨 C군(群)만이 더 좋았고 나머지 군(群)은 모두 낮았다. 2. 혈장(血漿)을 분석한 결과(結果) 나트륨은 실험군(實驗群)의 암수 모두 B군(群)에서 높았으며 칼륨은 실험군(實驗群)의 경우 암컷은 B군(群), 숫컷은 C군(群)에서, 칼슘의 경우 암컷은 B군(群), 수컷은 C군(群)에서 각각 높게 나타났다. 3. 근육내(筋肉內) 전해질(電解質) 량(量)은 나트륨의 경우 실험군(實驗群) B군(群)에서 암수 모두 높았으며, 칼륨의 경우 암컷은 B군(群)에서 수컷은 C군(群)에서 높았으며, 칼슘의 경우 암컷은 B군(群)에서 수컷은 D군(群)에서 높은 함량을 나타냈다. 4. 흰쥐의 성장(成長)과 전해질분포(電解質分布)에 마그네슘이 영향을 주고 있음을 알 수 있다.

  • PDF

스크린 프린팅 기반 저가형의 플렉서블 칼륨 이온 센서 제조 및 이의 전기화학적 특성 (Fabrication of Low-cost and Flexible Potassium Ion Sensors based on Screen Printing and Their Electrochemical Characteristics)

  • 손선규;박홍준;김영균;조현상;최봉길
    • 공업화학
    • /
    • 제30권6호
    • /
    • pp.737-741
    • /
    • 2019
  • 본 연구에서는 스크린 프린팅 공정을 이용하여 저렴하고 유연한 칼륨 이온(K+) 센서를 제작하였다. 전도성 잉크의 균일한 코팅은 주사 전자 현미경 및 광학 현미경 측정에 의해 입증되었다. K+ 센서는 높은 감도, 빠른 응답 시간, 낮은 검출 한계를 보여주었다. 제조된 K+ 센서의 감도는 기계적으로 구부러진 상태에도 여전히 유지되었다. 히스테리시스 효과가 없는 우수한 반복성과 우수한 장기 안정성이 K+ 센서의 전기화학적 특성 분석에서 관찰되었다. 또한, K+ 센서는 다른 간섭 양이온이 존재하는 경우에도 정확하게 K+ 농도를 측정 할 수 있어 우수한 선택성을 증명하였다. 또한, 실제 스포츠 음료 샘플에서 K+ 농도의 성공적인 측정은 K+ 센서의 K+ 농도 값과 상용 K+ 미터를 비교하여 증명되었다.

해양환경의 에어로졸 화학- 농도와 함량비를 이용한 이온성분간의 관계에 대한 추론 (Aerosol Chemistry in the Marine Environment: Inference of Inter-logic Relationships from the Concentrations and Ratios of Sonic Constituents)

  • 김기현;이강웅
    • 한국대기환경학회지
    • /
    • 제14권2호
    • /
    • pp.143-152
    • /
    • 1998
  • The aerosol concentrations of ionic components were measured on a daily basis from a coastal monitoring site located at Kosan, Cheju Island from 26 September to 5 October 1997 as a field-intensive for a LRTAP project The chemical species we investigated include most of important inorganic species (i.e., Cl-, NO3-, F-, SO42-, Na+, NH4+, and K+) and some organic species (i.e. formats, acetate, and methanesulfonate (MSA) ions). The concentration data of those important inorganic and organic species obtained during this study were evaluated to properly address their chemical and physical characteristics. Most of major inorganic components including sulfate, sodium, chloride, and potassium ions exhibited very conservative relationships with each other such that the concentration ratios of any pair are quite analogous to that of seawater ratio. Since the oceans serve as the major sources of ionic constituents, their concentration changes appear to be senstively reflected by the factors affecting air-sea processes such as an increase in wind speed or changes in wind direction. A comparative analysis of sulfur-containing species such as seasalt (SS) and nonseasalt (NSS) sulfate and MSA were also made to assess the factors influencing the S cycling. An evaluation of NSS/SS ratios suggests that most of sulfate be associated with NSS fraction rather than 55 one. The finding of lower MSA/NSS-SO42- ratio along with a line of physical evidence such as intrusion of anthropogenically affected air mass suggests that the oxidation of S species have been promoted under the conditions encountered during the study period. Finally, the concentration data of carboxylic species (such as formats and acetate ions) were also analyzed. Although the existence of temporal trends were difficult to assess, these data indicate that their contribution to the precipitation acidity may not be significant enough.

  • PDF

Improved growth and development in Suaeda glauca through exogenous treatment with indole-3-carboxylic acid

  • Kim, Ji-Young;Cho, Ei Ei;Lee, Seung Jae;Jeong, Jae-Hyeok;Chung, Nam-Jin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.37-37
    • /
    • 2017
  • Mechanistic studies of halophytes are urgent areas of agricultural research due to the increase in saline-contaminated and irrigated land worldwide. The halophyte Suaeda glauca (S. glauca) has advantages in terms of biomass and saline elimination due to its large mass and well-developed phenotype on seashores, although its mechanistic features and growing specificities still require systematic investigation. In this study, S. glauca was cultivated under various saline concentrations (0-400 mM) in Hoagland's solution in the absence or presence of indole derivatives to elucidate physiological features. The results confirmed the optimal growth and development of S. glauca in 50 mM NaCl, and morphologies such as the number of branches, shoot length, and fresh and dry weights were improved by indole-3-carboxylic acid (ICA) treatment. The cation concentrations in roots, shoots and leaves were investigated to examine the ionic imbalances in response to saline treatment, and the results demonstrated that sodium ions accumulated to high concentrations in leaves. The levels of calcium and potassium ions in roots were maintained or slightly decreased in the presence of 50 mM NaCl and proline concentration was increased significantly in roots at optimal concentrations. These results demonstrate that the concentrations of ions and metabolites are key regulators of optimal growth by regulating the physiology of halophytes.

  • PDF

이온교환 능력을 가진 지지체에 부착된 나노 영가철을 이용한 질산성 질소의 환원과 부산물 제거 (Reduction of Nitrate using Nanoscale Zero-Valent Iron Supported on the Ion-Exchange Resin)

  • 박희수;박용민;조윤성;오수경;강상윤;유경민;이성재;최용수;이상협
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.679-687
    • /
    • 2007
  • Nanoscale zero valent ion (nZVI) technology is emerging as an innovative method to treat contaminated groundwater. The activity of nZVI is very high due to their high specific surface area, and supporting this material can help to preserve its chemical nature by inhibiting oxidation. In this study, nZVI particles were attached to granular ion-exchange resin through borohydride reduction of ferrous ions, and chemical reduction of nitrate by this material was investigated as a potential technology to remove nitrate from groundwater. The pore structure and physical characteristics were measured and the change by the adsorption of nZVI was discussed. Batch tests were conducted to characterize the activity of the supported nZVI and the results indicated that the degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of $0.425h^{-1}$ without pH control. The reduction process continued but at a much lower rate with a rate constant of $0.044h^{-1}$, which is likely limited by mass transfer. To assess the effects of other ions commonly found in groundwater, the same experiments were conducted in simulated groundwater with the same level of nitrate. In simulated groundwater, the rate constant was $0.078h^{-1}$ and it also reduced to $0.0021h^{-1}$ in later phase. The major limitation in application of ZVI for nitrate reduction is ammonium production. By using a support material with ion exchange capacity, the problem of ammonium release can be solved. The ammonium was not detected in the batch test, even when other competitive ions such as calcium and potassium existed.

Penicillium oxalicum(HCLF-34)으로부터 분비되는 Anabaena cylindrica 세포벽 분해효소의 특성 (Characteristics of the Cell Wall Lytic Enzyme of Anabaena cylindrica from Penicillium oxalicum(HCLF-34))

  • 현성희;최영길
    • 미생물학회지
    • /
    • 제35권3호
    • /
    • pp.231-236
    • /
    • 1999
  • Penicillium oxalicum 으로부터 세포외로 분비되는 Anabaena cylindrica 분해효소의 분자량은 renaturation SDS-PAGE에서 약 22kDa 으로 확인되었으며, 분해 효소의 농축은 ultrafiltration cut off fraction 중 30-10 kDa 구간에서 수획하였다. 최적 활성조건의 측정 결과 적정 pH는 3.5-4.0, 적정반응 온도는 $20^{\circ}C$, 그리고 온도 안정성은 $4^{\circ}C$ 이하에서 100% 이상, 20-$90^{\circ}C$ 범위에서는 50% 이상의 활성을 나타내었다. 금속이온 및 효소안정제의 영향에서는 $Na^+$,$K^+$, $Ba^(2+)$, $Mg^(2+)$, $Mn^(2+)$의 양이온과 BSA는 효소의 활성을 촉진시키는 반면, $Ca^(2+)$, $Cu^(2+)$의 양이온과 EDTA, PMSF 는 효소의 활성을 억제하는 작용을 하였다. 이러한 금속이온과 안정제의 영향에서 1가, 2가 양이온에 의해 활성이 증가하고, $Fe^(3+)$, $Ca^(2+)$, $Cu^(2+)$의 양이온에 의해서는 활성이 감소하는 결과는 대부분의 세포벽 분해효소가 갖는 특성과 유사한 결과였다. 분해효소는 A. cylindrica 과 Micrococcus. luteus 의 세포벽을 기질로 사용한 효소의 활성 반응에서 반응 시작 후 1시간에서 5시간 사이에 반응 산물로 환원당의 양이 급격히 증가하였다.

  • PDF

Adsorption characteristics of strontium onto K2Ti4O9 and PP-g-AA nonwoven fabric

  • Lee, Tae hun;Na, Choon-Ki;Park, Hyunju
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.330-338
    • /
    • 2018
  • This study investigated the possibility of using potassium titanate oxide ($K_2Ti_4O_9$) and acrylic acid-grafted polypropylene fabric (PP-g-AA) as adsorbents capable of removing strontium from aqueous solutions. $K_2Ti_4O_9$ showed the highest rate of strontium removal in the weak alkaline range, while the PP-g-AA increased strontium removal in the neutral range. Moreover, the adsorption capacity of the $K_2Ti_4O_9$ was not affected by the coexistence of K and Na ions, while the adsorption capacity decreased when Ca and Mg ions were present at the same concentration as that of strontium. When coexisted at the same concentration as strontium, Na, K, Ca, and Mg ions strongly reduced the adsorption capacity of the PP-g-AA. The results also indicated that the adsorption of strontium on $K_2Ti_4O_9$ was consistent with both the Langmuir and Freundlich adsorption isotherms. In contrast, the adsorption of strontium on the PP-g-AA was more consistent with the Langmuir isotherm model. Moreover, the adsorption equilibrium time of $K_2Ti_4O_9$ was generally 12 h, while that of the PP-g-AA was 5 h, indicating that the adsorption rates were consistent with the pseudo-second order kinetics model. $K_2Ti_4O_9$ and the PP-g-AA could be regenerated by simple washing with 0.5 N HCl.

Determination of Si/Al Ratio of Faujasite-type Zeolite by Single-crystal X-ray Diffraction Technique. Single-crystal Structures of Fully Tl+- and Partially K+-exchanged Zeolites Y (FAU), |Tl71|[Si121Al71O384]-FAU and |K53Na18|[Si121Al71O384]-FAU

  • Seo, Sung-Man;Lee, Oh-Seuk;Kim, Hu-Sik;Bae, Dong-Han;Chun, Ik-Jo;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권10호
    • /
    • pp.1675-1682
    • /
    • 2007
  • Large colorless single crystals of faujasite-type zeolite with diameters up to 200 μm have been synthesized from gels with the composition of 3.58SiO2:2.08NaAlO2:7.59NaOH:455H2O:5.06TEA:1.23TCl. Two of these, colorless octahedron about 200 μm in cross-section have been treated with aqueous 0.1 M TlC2H3O2 and KNO3 in order to prepare Tl+- and K+-exchanged faujasite-type zeolites, respectively, and then determined the Si/Al ratio of the zeolite framework. The crystal structures of |Tl71|[Si121Al71O384]-FAU and |K53Na18|[Si121Al71O384]-FAU per unit cell, a = 24.9463(2) and 24.9211(16) A, respectively, dehydrated at 673 K and 1 × 10-6 Torr, have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd m at 294 K. The two single-crystal structures were refined using all intensities to the final error indices (using only the 905 and 429 reflections for which Fo > 4σ(Fo)) R1/R2 = 0.059/0.153 and 0.066/0.290, respectively. In the structure of fully Tl+-exchanged faujasite-type zeolite, 71 Tl+ ions per unit cell are located at four different crystallographic sites. Twenty-nine Tl+ ions fill site I' in the sodalite cavities on 3-fold axes opposite double 6-rings (Tl-O = 2.631(12) A and O-Tl-O = 93.8(4)o). Another 31 Tl+ ions fill site II opposite single 6-rings in the supercage (Tl-O = 2.782(12) A and O-Tl-O = 87.9(4)o). About 3 Tl+ ions are found at site III in the supercage (Tl-O = 2.91(6) and 3.44(3) A), and the remaining 8 occupy another site III (Tl-O = 2.49(5) and 3.06(3) A). In the structure of partially K+-exchanged faujasite-type zeolite, 53 K+ ions per unit cell are found at five different crystallographic sites and 18 Na+ ions per unit cell are found at two different crystallographic sites. The 4 K+ ions are located at site I, the center of the hexagonal prism (K-O = 2.796(8) A and O-K-O = 89.0(3)o). The 10 K+ ions are found at site I' in the sodalite cavity (K-O = 2.570(19) A and O-KO = 99.4(9)o). Twenty-two K+ ions are found at site II in the supercage (K-O = 2.711(9) A and O-K-O = 94.7(3)o). The 5 K+ ions are found at site III deep in the supercage (K-O = 2.90(5) and 3.36(3) A), and 12 K+ ions are found at another site III' (K-O = 2.55(3) and 2.968(18) A). Twelve Na+ ions also lie at site I' (Na-O = 2.292(10) and O-Na-O = 117.5(5)o). The 6 Na+ ions are found at site II in the supercage (Na-O = 2.390(17) A and O-Na-O = 113.1(11)o). The Si/Al ratio of synthetic faujasite-type zeolite is 1.70 determined by the occupations of cations, 71, in two single-crystal structures.

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

수용성 폴리머 겔 전헤액을 사용한 Pseudocapacitor의 전기화학적 특성 (Electrochemical Characteristics of Pseudocapacitor Using Aqueous Polymeric Gel Electrolyte)

  • 박수길
    • 전기화학회지
    • /
    • 제6권2호
    • /
    • pp.158-160
    • /
    • 2003
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400 F/g (specific capacitance) and good cycleability. But, it had serious demerits of low voltage range under 0.5 V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. We report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over 250 F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100 F/g capacitance. This capacitance was only electric double layer capacitance of active surface area. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Itis very hard to reach resistive layer. So, we have studied on pretreatment of electrode to contain working ions easily. We'll report more details.