• Title/Summary/Keyword: potassium channel

Search Result 221, Processing Time 0.023 seconds

The Substates with Mutants That Negatively Charged Aspartate in Position 172 Was Replaced with Positive Charge in Murine Inward Rectifier Potassium Channel (Murine Kir2.1)

  • So, I.;Ashmole, I.;Stanfield, P.R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.267-273
    • /
    • 2003
  • We have investigated the effect on inducing substate(s) of positively charged residues replaced in position 172 of the second transmembrane domain in murine inward rectifier potassium channels, formed by stable or transient transfection of Kir2.1 gene in MEL or CHO cells. Single channel recordings were obtained from either cell-attached patches or inside-out patches excised into solution containing 10 mM EDTA to rule out the effect of $Mg^{2+}$ on the channel gating. The substate(s) could be recorded with all mutants D172H, D172K and D172R. The unitary current-voltage (I-V) relation was not linear with D172H at $pH_i$ 6.3, whereas the unitary I-V relation was linear at $pH_i$ 8.0. The relative occupancy at $S_{LC}$ was increased from 0.018 at $pH_i$ 8.0 to 0.45 at $pH_i$ 5.5. In H-N dimer, that was increased from 0.016 at $pH_i$ 8.0 to 0.23 at $pH_i$ 5.5. The larger the size of the side chain or $pK_a$ with mutants (D172H, D172K and D172R), the more frequent the transitions between the fully open state and substate within an opening. The conductance of the substate also depended upon the pKa or the size of the side chain. The relative occupancy at substate $S_{LC}$ with monomer D172K (0.50) was less than that in K-H dimer (0.83). However, the relative occupancy at substate with D172R (0.79) was similar to that with R-N dimer (0.82). In the contrary to ROMK1, positive charge as well as negative charge in position 172 can induce the substate rather than block the pore in murine Kir2.1. The single channel properties of the mutant, that is, unitary I-V relation, the voltage dependence of the mean open time and relative occupancy of the substates and the increased latency to the first opening, explain the intrinsic gating observed in whole cell recordings.

Cloning of a pore-forming subunit of ATP-sensitive potassium channel from Clonorchis sinensis

  • Hwang, Seung-Young;Han, Hye-Jin;Kim, So-Hee;Park, Sae-Gwang;Seog, Dae-Hyun;Kim, Na-Ri;Han, Jin;Chung, Joon-Yong;Kho, Weon-Gyu
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.2
    • /
    • pp.129-133
    • /
    • 2003
  • A complete cDNA sequence encoding a pore-forming subunit (Kir6.2) of ATP-senstive potassium channel in the adult worm, Clonorchis sinensis, termed CsKir6.2, was isolated from an adult CDNA library. The cDNA contained a single open-reading frame of 333 amino acids, which has a structural motif (a GFG-motif) of the putative pore-forming loop of the Kir6.2. Peculiarly, the Cskir6.2 shows a lack-sequence structure, which deleted 57 amino acids were deleted from its N-terminus. The predicted amino acid sequence revealed a highly conserved sequence as other known other Kir6.2 subunits. The mRNA was weekly expressed in the adult worm.

Xenopus Oocyte의 $K^{+}$ Channel에 관한 연구

  • 채수완
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.160-160
    • /
    • 1993
  • 목적: Guinea pig heart의 ATP sensitive $K^{+}$ channel xenopus oocyte에 발현시켜 연구하고져 본 실험을 행하였다. 실험방법: 기니픽 심장으로부터 ,RNA를 분리하여 50ng/$\mu$l의 농도로 50nl를 xenopusdp 주입하였다. Xenpus oocyte에서 conventional electrode를 이용 막전휘를 측정하였고, pH selective 미세전극으로 세포내 pH를 측정하였다. 막전위에 미치는 potassium channel opener, blocker, KCN의 작용을 관찰하였다. 결과: 기니픽 심장 mRNA를 주입하거나 주입하지 않은 xenopus oocyte에서 $K^{+}$channel opener인 cromakalin, RP49356등은 과분극을 일으키지 못하였다. 그러나 세포내 ATP 감소제인 KCN은 농도 의존적으로 과분극을 일으켰으나 ,glibenclamide에 의해 차단되는 않았다. mRNA를 주입한 oocyte에서 Na-H 자극제인 NH$_4$Cl은 pH 변동을 일으켜 NA-H exchange를 expression 시켰다. 결론: Xenopus oocyte는 cromakalin등에 의해 open되는 $K^{+}$channel 은 없었고, 기니픽 심근의 ATP sensitive $K^{+}$channel로 expression 되지 않았으나 Na-H exchange 는 expression 됨을 알 수 있었다. KCN으로 open 되는 $K^{+}$channel이 있었으나 glibenclamide에는 차단되지 않는 channel이였다.

  • PDF

A Modified Hodgkin-Huxley Model (수정된 호지킨-헉슬리 모델)

  • 서병설
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.151-158
    • /
    • 1981
  • A modification of the Hodgkin-Huxley equations was done with the changes of the binding sitea for the sodium and potassium channels. The computer simulation results agree well with the currant experiments. Thus, the contradictory problems that Suh had indicated previously can be solved. And also, the results show that the sodium and potassium channels play an important role in the firing and the leakage channel does not.

  • PDF

Pinacidil causes depresor action, catecholamine release and vasorelaxation in the normotensive rat

  • Lim, Dong-Yoon;Lee, Eun-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.87.2-88
    • /
    • 2003
  • The present study was conducted to investigate the effects of pinacidil, a potassium channel opener, on arterial blood pressure, catecholamine release and vascular contractile responses in the normotensve rats and to establish the mechanism of action. Phenylephrine (an adrenergi $_1$-receptor agonist) and high potassium (a membrane- depolarizing agent) caused greatly contractile responses in the isolated aortic strips, respectively. These phenylephrine (10$\^$-5/ M)-induced contractile responses were dose-dependently depressed in the presence of pinacidil (25 ∼ 100 ${\mu}$M). (omitted)

  • PDF

Effect of Propofol, an Intravenous Anesthetic Agent, on $K_{ATP}$ Channels of Pancreatic ${\beta}-cells$ in Rats

  • Park, Eun-Jee;Song, Dae-Kyu;Cheun, Jae-Kyu;Bae, Jung-In;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2000
  • ATP-sensitive potassium channels ($K_{ATP}$ channels) play an important role in insulin secretion from pancreatic beta cells. We have investigated the effect of propofol on $K_{ATP}$ channels in cultured single pancreatic beta cells of rats. Channel activity was recorded from membrane patches using the patch-clamp technique. In the inside-out configuration bath-applied propofol inhibited the $K_{ATP}$ channel activities in a dose-dependent manner. The half-maximal inhibition dose (ED50) was $48.6{\pm}8.4\;{\mu}M$ and the Hill coefficient was $0.73{\pm}0.11.$ Single channel conductance calculated from the slope of the relationship between single channel current and pipette potential $(+20{\sim}+100\;mV)$ was not significantly altered by propofol $(control:\;60.0{\pm}2.7\;pS,\;0.1\;mM\;propofol:\;58.7{\pm}3.5\;pS).$ However, mean closed time was surely increased. Above results indicate that propofol blocks the $K_{ATP}$ channels in the pancreatic beta cells in the range of its blood concentrations during anesthesia, suggesting a possible effect on insulin secretion and blood glucose level.

  • PDF

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

  • Ahn, Sung Yeon;Kim, Gu-Hwan;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.8
    • /
    • pp.309-312
    • /
    • 2015
  • Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium ($K_{ATP}$) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonylureas close the $K_{ATP}$ channel and increase insulin secretion. KCNJ11 and ABCC8 mutations have important therapeutic implications because sulfonylurea therapy can be effective in treating patients with mutations in the potassium channel subunits. The mutation type, the presence of neurological features, and the duration of diabetes are known to be the major factors affecting the treatment outcome after switching to sulfonylurea therapy. More than 30 mutations in the KCNJ11 gene have been identified. Here, we present our experience with a patient carrying a novel p.H186D heterozygous mutation in the KCNJ11 gene who was successfully treated with oral sulfonylurea.

The Shaker Type Potassium Channel, GORK, Regulates Abscisic Acid Signaling in Arabidopsis

  • Lim, Chae Woo;Kim, Sang Hee;Choi, Hyong Woo;Luan, Sheng;Lee, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.684-691
    • /
    • 2019
  • Evolution of adaptive mechanisms to abiotic stress is essential for plant growth and development. Plants adapt to stress conditions by activating the abscisic acid (ABA) signaling pathway. It has been suggested that the ABA receptor, clade A protein phosphatase, SnRK2 type kinase, and SLAC1 anion channel are important components of the ABA signaling pathway. In this study, we report that the shaker type potassium (K+) channel, GORK, modulates plant responses to ABA and abiotic stresses. Our results indicate that the full length of PP2CA is needed to interact with the GORK C-terminal region. We identified a loss of function allele in gork that displayed ABA-hyposensitive phenotype. gork and pp2ca mutants showed opposite responses to ABA in seed germination and seedling growth. Additionally, gork mutant was tolerant to the NaCl and mannitol treatments, whereas pp2ca mutant was sensitive to the NaCl and mannitol treatments. Thus, our results indicate that GORK enhances the sensitivity to ABA and negatively regulates the mechanisms involved in high salinity and osmotic stresses via PP2CA-mediated signals.

The uniqueness of the plant mitochondrial potassium channel

  • Pastore, Donato;Soccio, Mario;Laus, Maura Nicoletta;Trono, Daniela
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.391-397
    • /
    • 2013
  • The ATP-inhibited Plant Mitochondrial $K^+$ Channel ($PmitoK_{ATP}$) was discovered about fifteen years ago in Durum Wheat Mitochondria (DWM). $PmitoK_{ATP}$ catalyses the electrophoretic $K^+$ uniport through the inner mitochondrial membrane; moreover, the co-operation between $PmitoK_{ATP}$ and $K^+/H^+$ antiporter allows such a great operation of a $K^+$ cycle to collapse mitochondrial membrane potential (${\Delta}{\Psi}$) and ${\Delta}pH$, thus impairing protonmotive force (${\Delta}p$). A possible physiological role of such ${\Delta}{\Psi}$ control is the restriction of harmful reactive oxygen species (ROS) production under environmental/oxidative stress conditions. Interestingly, DWM lacking ${\Delta}p$ were found to be nevertheless fully coupled and able to regularly accomplish ATP synthesis; this unexpected behaviour makes necessary to recast in some way the classical chemiosmotic model. In the whole, $PmitoK_{ATP}$ may oppose to large scale ROS production by lowering ${\Delta}{\Psi}$ under environmental/oxidative stress, but, when stress is moderate, this occurs without impairing ATP synthesis in a crucial moment for cell and mitochondrial bioenergetics.