• Title/Summary/Keyword: posture discomfort

Search Result 92, Processing Time 0.023 seconds

Effect on Discomfort and Attention Through Analysis of Resting-State Brain Wave Activity in Forward Head Posture (휴식시 뇌파 활성 분석을 통한 거북목 자세의 불편함 및 주의력에 미치는 영향 연구)

  • Ju-Yeon Jung;Chang-Ki Kang
    • Science of Emotion and Sensibility
    • /
    • v.27 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Forward head posture (FHP) is a representative postural deformation problem in people today, causing various physical and mental problems, but the effect of FHP on discomfort or distraction during rest is not well known. Accordingly, this study aims to demonstrate the effect of FHP on these brain functions by analyzing brain wave signals at rest. Thirty-three heavy users of computers participated in this study, and all of them exhibited functional FHP when using computers. All participants performed using both normal posture and FHP, and their brain waves were measured at rest while maintaining each posture for five minutes without stimulation. Brain wave signals were acquired using EEG with 32 channels, and through frequency analysis, changes in delta and beta waves, known to be closely related to discomfort and attention, were compared and analyzed depending on the posture. As a result, FHP showed a significant decrease in delta waves in nine channels compared to the normal posture, and a significant increase in beta waves in 14 channels, showing that FHP does affect brain function at rest. These changes are consistent with those that occur under conditions of psychological discomfort and distraction, and they appear to be because the increased discomfort caused by musculoskeletal changes in the FHP also affects brain activity. These can provide important results showing that posture correction can help improve brain function and psychological state at rest.

팔의 자세예측을 위한 비용함수의 개발에 관한 연구

  • 최재호;김성환;정의승
    • Proceedings of the ESK Conference
    • /
    • 1994.04a
    • /
    • pp.115-123
    • /
    • 1994
  • A man model can be used as an effective tool to design ergomonically sound products and workplaces, and subsequently evaluate them properly. For a man model to be truly useful, it must be integrated with a posture prediction model which should be capable of representing the human arm reach posture in the context of equipments and workspaces. Since the human movement possesses redundant degrees of freedom, accurate representation or prediction of human movemtn was known to be a difficult problem. To solve this redundancy problem, the psychophysical cost function can predict the arm reach posture accurately. But the joint discomfort that human feels at the joint can not be predicted since the effects of external factors on the joint discomfort is not known. In this study a psychophysical experi- ment using the magnitude estimation technique was performed to evaluate the effects of external factors such as joint, joint angle and Perceived Exertion Ratio on the joint discomfort. Results showed that the joint discomfort increased as the Perceived Exertion Ratio increased, but the relation is not linear and was affected not only by the joint but also by the joint angle for the same Perceived Exertion Ratio. The interaction effect of the joint and the joint angle was also significant. From the results it is needed to develope the cost function which can predict the joint discomfort considering the joint, joint angle and external load.

  • PDF

Development of a Postural Evaluation Function for Effective Use of an Ergonomic Human Model (인체모형의 효과적 활용을 위한 자세 함수의 개발)

  • Park, Sungjoon;Kim, Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • The ergonomic human model can be considered as a tool for the evaluation of ergonomic factors in vehicle design process. The proper anthropometric data on driver's postures are needed in order to apply a human model to vehicle design. Although studies on driver's posture have been carried out for the last few decades, there are still some problems for the posture data to be applied directly to the human model due to the lack of fitness because such studies were not carried out under the conditions for the human model application. In the traditional researches, the joint angles were evaluated by the categorized data, which are not appropriate for the human model application because it is so extensive that it can not explain the posture evaluation data in detail. And the human models require whole-body posture evaluation data rather than joint evaluation data. In this study a postural evaluation function was developed not by category data but by the concept of the loss function in quality engineering. The loss was defined as the discomfort in driver's posture and measured by the magnitude estimation technique in the experiment using a seating buck. Four loss functions for the each joint - knee, hip, shoulder, and elbow were developed and a whole-body postural evaluation function was constructed by the regression analysis using these loss functions as independent factors. The developed postural evaluation function shows a good prediction power for the driver's posture discomfort in validation test. It is expected that the driver's postural evaluation function based on the loss function can be used in the human model application to the vehicle design process.

The Effect of Shoulder and Elbow Postures with External Loads on the Perceived Discomfort (어깨와 팔꿈치의 조합자세 및 외부부하가 지각불편도에 미치는 영향)

  • Kim, Dong-Jin;Na, Seok-Hee;Park, Guk-Mu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.145-151
    • /
    • 2006
  • The objective of this study is to investigate the perceived discomfort for postures combined with shoulder flexion/extension and elbow flexion, and external load. 12 healthy male undergraduate and graduate students participated in this experiment. Experimental variables were the shoulder flexion/extension angle(-20°, 0°, 45°, 90°, 135°), the elbow flexion angle (0°, 45°, 120°), and the external load(0, 1.5Kg, 3Kg) as independent variables and a whole body perceived discomfort using Borg's CR10 as a dependent variable. The subjects maintained the given posture for 60 seconds and then rated the perceived discomfort. The ANOVA results showed that all main factors and two-way interactions were statistically significant at α=0.05. As a result of regression analysis to examine the effect of external load on the perceived discomfort, the perceived discomfort linearly increased as the level of external load increased. Then, the effect of external load on the perceived discomfort was quantitatively classified into three levels based on the result of regression analysis.

Ergonomic Evaluation of Workload in Imbalanced Lower Limbs Postures

  • Kim, Eun-Sik;Yoon, Hoon-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.671-681
    • /
    • 2011
  • Objective: The purpose of this study is to compare the workload level at each lower limbs posture and suggest the ergonomic workstation guideline for working period by evaluating the imbalanced lower limbs postures from the physiological and psychophysical points of view. Background: Many workers like welders are working in various imbalanced lower limbs postures either due to the narrow working conditions or other environmental conditions. Method: Ten male subjects participated in this experiment. Subjects were asked to maintain 3 different lower limbs postures(standing, squatting and bending) with 3 different working conditions(balanced floor with no scaffold, imbalanced floor with 10cm height of scaffold, and imbalanced floor with 20cm height of scaffold). EMG data for the 4 muscle groups(Retus Femoris, Vastus Lateralis, Tibialis Anterior, Gastrocnemius) from each lower limbs posture were collected for 20 seconds every 2 minutes during the 8 minutes sustaining task. Subjects were also asked to report their discomfort ratings of body parts such as waist, upper legs, lower legs, and ankle. Results: The ANOVA results showed that the EMG root mean square(RMS) values and the discomfort ratings(CR-10 Rating Scale) were significantly affected by lower limbs postures and working time(p<0.05). The correlation was analyzed between the EMG data and the discomfort ratings. Also, prediction models for the discomfort rating for each posture were developed using physical condition, working time, and scaffold height. Conclusion: We strongly recommend that one should not work more than 6 minutes in a standing or squatting postures and should not work more than 4 minutes in a bending posture. Application: The results of this study could be used to design and assess working environments and methods. Furthermore, these results could be used to suggest ergonomic guidelines for the lower limbs postures such as squatting and bending in the working fields in order to prevent fatigue and pain in the lower limbs body.

Investigation on Perceived Discomfort Depending on External Load, Upper Limb Postures and their Duration (외부 부하, 상지 자세와 지속 시간에 따른 지각 불편도)

  • Kee, Dohyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.2
    • /
    • pp.76-83
    • /
    • 2004
  • This study aimed to empirically investigate perceived discomfort depending upon external load, upper limb postures and their holding time. Discomfort was obtained through an experiment, in which external load, wrist flexion/extension, elbow flexion, shoulder flexion and adduction/abduction were used as experimental variables. The subjects were instructed to hold given postures for 60s and to rate their subjective discomfort scores at 5s, 20s, 40s and 60s by using the free modulus method of magnitude estimation. The results showed that while only external load and elbow flexion were statistically significant at the holding time of 5s at ${\alpha}=0.05$ or 0.10, external load and upper limb postures excluding shoulder adduction/abduction significantly affected discomfort ratings at 20s, 40s and 60s at ${\alpha}=0.01$ or 0.05. Discomfort scores were also significantly different between four posture holding times at ${\alpha}=0.01$. The effects of external load and holding time were much larger than those of upper limb postures. Based on the results of this study, it is recommended that external load and holding time as well as working postures betaken into consideration to precisely quantify postural load in industry.

Psychophysical Stess Depending on Repetition of Wrist Motion and External Load (손목 동작의 반복과 외부 부하에 따른 심물리학적 부하)

  • Kee, Do-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.123-128
    • /
    • 2004
  • This study investigated effect of arm posture, repetition of wrist motion and external load on perceived discomfort. The arm postures were controlled by shoulder flexion, elbow flexion, and ist motions such as flexion, extension, radial deviation and ulnar deviation. An experiment was conducted to measure discomfort scores for experimental treatments using the magnitude estimation, in which the L16 orthogonal array was adopted for reducing the size of experiment. The results showed that while the effect of the shoulder flexion, repetition of wrist motion and external load was statistically significant at $\alpha=0.05$or 0.10, that of the elbow and wrist motions was not. Discomfor ratings increased linearly as levels of wrist repetition and external load increased. This implies that the existing posture classification schemes such as OWAS, RULA, which do not properly consider effect of motion repetition and external load, may underestimate postural load. Based on the regression equation for wrist repetition and external load, isocomfort region indicating the region within which discomfort scores were expected to be the same was proposed. It is recommended that when assessing risk of postures or developing new posture classification schemes, motion repetition and external load as well as posture itself be fully taken into consideration for precisely evaluating postural stress.

Effect of Working Posture on the Productivity and Perceived Discomfort while Drilling on the Ceiling

  • Yoon, Tae-Lim;Yoon, Jangwhon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.549-555
    • /
    • 2013
  • Objective: The purpose of this study was to compare the performance of drilling on the ceiling in three different postures (standing, standing on the ladder and supine on the height adjusted board) and the subjective responses of perceived discomfort after the drilling. Background: Overhead work has been identified as a major occupational risk factor and has been a main research subject. Method: Ten young participants drilled 20 holes at the pre-marked places on the ceiling in three different postures. The drilling duration, resting and drilling heart rate were measured. The levels of perceived discomfort at neck, shoulder, elbow, hand and overall body were asked at the end of each task. Results: The working posture affected the heart rate after the drilling. Perceived discomfort in the neck decreased significantly in supine compared to drilling on the ladder. Conclusion: The results of this study suggest that drilling in supine can be an alternative way to reduce the drilling heart rate and the level of perceived discomfort in the neck without sacrificing the productivity. Application: The results of this study would be considered when drilling on the ceiling is required in construction workers.

Internal Oblique and Transversus Abdominis Muscle Fatigue Induced by Slumped Sitting Posture after 1 Hour of Sitting in Office Workers

  • Waongenngarm, Pooriput;Rajaratnam, Bala S.;Janwantanakul, Prawit
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • Background: Prolonged sitting leads to low back discomfort and lumbopelvic muscle fatigue. This study examined the characteristics of body perceived discomfort and trunk muscle fatigue during 1 hour of sitting in three postures in office workers. Methods: Thirty workers sat for 1 hour in one of three sitting postures (i.e., upright, slumped, and forward leaning postures). Body discomfort was assessed using the Body Perceived Discomfort scale at the beginning and after 1 hour of sitting. Electromyographic (EMG) signals were recorded from superficial lumbar multifidus, iliocostalis lumborum pars thoracis, internal oblique (IO)/transversus abdominis (TrA), and rectus abdominis muscles during 1 hour of sitting. The median frequency (MDF) of the EMG power spectrum was calculated. Results: Regardless of the sitting posture, the Body Perceived Discomfort scores in the neck, shoulder, upper back, low back, and buttock significantly increased after 1 hour of sitting compared with baseline values ($t_{(9)}=-11.97$ to -2.69, p < 0.05). The MDF value of the EMG signal of rectus abdominis, iliocostalis lumborum pars thoracis, and multifidus muscles was unchanged over time in all three sitting postures. Only the right and left IO/TrA in the slumped sitting posture was significantly associated with decreased MDF over time (p = 0.019 to 0.041). Conclusion: Prolonged sitting led to increased body discomfort in the neck, shoulder, upper back, low back, and buttock. No sign of trunk muscle fatigue was detected over 1 hour of sitting in the upright and forward leaning postures. Prolonged slumped sitting may relate to IO/TrA muscle fatigue, which may compromise the stability of the spine, making it susceptible to injury.

Quantitative Evaluation of Driver's Postural Change and Lumbar Support Using Dynamic Body Pressure Distribution (동적 체압 분포를 이용한 운전 자세 변화와 요추지지대의 정량적 평가)

  • Na, Seok-Hui;Im, Seong-Hyeon;Jeong, Min-Geun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.57-73
    • /
    • 2003
  • Although body pressure distribution is sensitive to movements and is relatively simple to measure even in small space, there are few researches involving applications to driver's posture and its change. The main objective in this study is the application of body pressure distribution measurements for the prediction of the driver's posture and its change. This requires quantitative analyses of the dynamic body pressure distribution, which is the change of body pressure distribution with time. The experiment involved 16 male subjects who drove for 45 minutes in a seating buck. Measurement time, stature group, and lumbar support prominence were selected as independent variables, with subjective ratings of driver's discomfort, body posture data of hip, torso. knee angle, and body pressure data variables as dependent variables. The body pressure change variables and subjective ratings were found to increase as the measurement time increased and body pressure ratio variables reflected the torso angle. From the results and analysis of the body posture data and subjective rating results, it was predicted that the seats and the design of the lumbar supports used in the experiment was not fit for tall subjects, which could also be confirmed through the body pressure distribution data.