• Title/Summary/Keyword: postharvest ripening

Search Result 31, Processing Time 0.023 seconds

Quality changes of fresh-cut winter squash treated with different postharvest ripening periods and packaging methods (신선편이 단호박 원료의 후숙기간 및 가공 후 포장방법에 따른 저장 중 품질변화)

  • Kim, Ji-Gang;Choi, Ji-Woen;Cho, Mi-Ae
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • This study was conducted in order to evaluate the effect of postharvest ripening periods and packaging methods on maintaining the quality of fresh-cut winter squash. Winter squash (var. Bouchang) was ripened at $22^{\circ}C$ for 1 or 2 weeks after harvest. The samples were washed in tap water, sanitized in $100{\mu}L/L$ chlorine water, peeled, and cut into 16 parts. Samples were then vacuum packaged or non-vacuum packaged in $80{\mu}m$ nylon/polyethylene (Ny/PE) films and stored at $5^{\circ}C$ for 21 days. Results indicated that different postharvest ripening periods affected gas concentration, firmness, off-odor development, color, and overall quality of fresh-cut winter squash. Samples treated with 2-week ripening periods maintained quality with higher redness value and soluble solid content (SSC) and lower $CO_2$ concentration and off-odor development compared to samples treated with a 1-week ripening period. Non vacuum packaging was effective in increasing visual quality and reducing off-odor development. A combination treatment of 2-week ripening periods and non-vacuum packaging maintained good quality with the lowest off-odor development and the highest visual quality scores at the end of the storage period.

Effect of Ripening Temperatures on Incidences of Postharvest Fruit Rots of Kiwifruits (후숙 온도가 참다래 저장병 발병에 미치는 영향)

  • Koh, Young-Jln;Lee, Jae-Goon;Hur, Jae-Seoun;Jung, Jae-Sung
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.201-204
    • /
    • 2003
  • This study was conducted to identify optimum ripening condition for kiwifruits (Actinidia deliciosa) to prevent postharvest fruit rots caused by Botryosphaeria dothidea, Diaporthe actinidiae and Botrytis cinerea. The optimum temperatures for mycelial growth of B. dothidea, D. actinidiae and B. cinerea were $26{\sim}35^{\circ}C$, $26{\sim}29^{\circ}C$ and $20{\sim}26^{\circ}C$, respectively, and the incidence was closely related with the temperature. Although kiwifruits ripened faster at higher temperatures, the rates of diseased fruits increased with the rates of ripened fruits increased. Optimum conditions for ripening of kiwifruit were 20-day at 17C.

The Effects of 1-Methylcyclopropene on the Quality of 'Ooishiwase' Plums (Prunus salicina L.) with Different Ripening Stage ('대석조생' 자두(Prunus salicina L.)의 숙기에 따른 1-Methylcyclopropene 처리효과)

  • Oh, Soh-Young;Lim, Byung-Seon;Lee, Jae-Wook;Lee, Ji-Hyun
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.511-515
    • /
    • 2007
  • 'Ooishiwase' plum (Prunus salicina L.) fruits were harvested at three pre-climacteric stages of ripeness (stages 1, 2, and 3) and treated with 1-methylcyclopropene (1-MCP, $1\;{\mu}L/L$) for 24 hours at $10^{\circ}C$ before storage to evaluate the effectiveness of 1-MCP in extending shelf-life at $10^{\circ}C$. Ethylene production and respiration rates were significantly lower after 1-MCP treatment compared to those of control fruit, throughout the entire storage period. Also 1-MCP delayed plum softening and color changes. However the chemical 1-MCP had no effect on fruit soluble solid content changes, the preservative 1-MCP is an effective tool for quality improvement in plums, and extension of shelf life of the fruit and plums can safely be harvested at stage 3 of ripening, at which time the most desirable organoleptic attributes have been developed.

Review of Quality Changes of Postharvest Fruits and Packaging Applications to Extend Their Shelf Life (국내 과실 선도유지 특성 및 포장기술 고찰)

  • Lee, Youn-Suk;Kim, Jai-Neung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.2
    • /
    • pp.109-115
    • /
    • 2006
  • In response to the continuous changes in current consumer demands and market trends for postharvest produces, the functional application for agricultural packaging is becoming increasely significant. This paper focuses on the overview of important changes in physical and chemical status related to postharvest physiology and applications of the functional packaging materials for maintaining the freshness of fruits after harvest. During postharvest treatment and storage periods, fresh fruits undergoes the ripening process in quality attributes of the fruit such as major changes of texture, color, and flavor. Major fruit packaging technologies are concerned with correct gas permeable film and functions of ethylene removal, antimicrobial, and antifogging substances to keep the effective freshness. Application guidelines for the functional packaging in fresh produces were studied.

  • PDF

Changes of Physicochemical Characteristics of Schizandra chinensis during Postharvest Ripening at Various Temperatures (후숙 온도에 따른 오미자의 이화학적 특성 변화)

  • Jeong, Pyeong-Hwa;Kim, Yong-Suk;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.469-474
    • /
    • 2006
  • This study was carried out to investigate the changes of physicochemical characteristics of Schizandra chinensis during postharvest ripening for 8 days at various temperatures. The juice yield of S. chinensis, which was 55.7% before postharvest ripening, was unchanged $(55.3{\pm}0.6-56.3{\pm}0.6%)$ at $4^{\circ}C$ storage, but was decreased at the level of 6 and 7% at $25^{\circ}C$ and room temperature (RT), respectively. During storage at $25^{\circ}C$ and RT, the titratable acidities of S. chinensis were the highest at $7.49{\pm}0.03$ and $7.20{\pm}0.03%$ after 6 days of postharvest ripening, respectively. During storage at $25^{\circ}C$ and RT, the soluble solid content of S. chinensis was increased from $8.2{\pm}0.1%$ at initial stage to a peak of $12.2{\pm}0.15%$ at 6-day storage, after which it decreased. L values (lightness) of S. chinensis were increased in all treatments during storage, and a values (redness) of $25^{\circ}C$ and RT treatments were increased from 5.04 initially to 6.77 and 7.65 at 8-day storage, respectively. The major free sugars of S. chinensis were fructose (0.55%), glucose (0.56%), and sucrose (0.50%). During storage at $25^{\circ}C$ and RT, the fructose and glucose contents were continually increased with increasing storage period, while the sucrose contents decreased after 6-day storage. Major non-volatile organic acids of S. chinensis were succinic (1.21%), citric (0.17%), and malic (0.07%) acids. Changes in the organic acids contents of S. chinensis at various temperatures showed a similar tendency to that of the free sugars. We estimated that the best conditions for the postharvest ripening of S. chinensis were 8 days at $4^{\circ}C$ storage, and 6 days at $25^{\circ}C$ and RT.

Effects of high carbon dioxide and ethylene treatment on postharvest ripening regulation of red kiwifruit (Actinidia melanandra Franch) during cold storage (고농도 이산화탄소와 에틸렌처리가 레드키위의 수확 후 저온저장 중 숙성조절에 미치는 효과)

  • Yang, Yong-Joon;Lim, Byung-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.478-485
    • /
    • 2017
  • The effect of high carbon dioxide and ethylene treatment on postharvest ripening regulation of red kiwifruit (Actinidia melanandra) was investigated during cold storage. Physio-chemical properties such as weight loss, firmness, SSC, acidity, and market quality were analysed in red kiwifruit held at $10^{\circ}C$ compared to the fruit treated with carbon dioxide and ethylene during 75 days of storage. No significant weight loss was detected in red kiwifruit treated with carbon dioxide until 75 days of storage while the most rapid loss was found in fruit treated with ethylene. In ethylene-treated fruit, the firmness was dramatically reduced from 4.2kg on the first day to 1.2 kg after 27 days of storage at $10^{\circ}C$. However, the firmness of the carbon dioxide-treated fruit was 1.8kg after 54 days of storage. The highest level of SSC(%) was investigated within the 27 storage days at $10^{\circ}C$ for fresh red kiwifruit treated with exogenous ethylene, whereas the carbon dioxide-treated fruit exhibited a greatly increased SSC after 64 days. The carbon dioxide-treated red kiwifruit maintained statistically(p<.01) higher levels of acidity compared to the control and the exogenous ethylene-treated ones during 41 days of storage at $10^{\circ}C$. The SSC/Acid ratio of fruit treated with carbon dioxide was significantly lower (p<.01) maintained than the other two treatments (ethylene-treated and control fruit)throughout the 75-day experiment. Based on the quality characteristics of postharvest red kiwifruit, it could be concluded that the carbon dioxide treatment significantly delayed the ripening process and maintained the market quality of harvested red kiwifruit, which can be a potential application for commercial use in the kiwi industry.

Incidence Rates of Major Diseases of Kiwiberry in 2015 and 2016

  • Kim, Gyoung Hee;Kim, Deok Ryong;Park, Sook-Young;Lee, Young Sun;Jung, Jae Sung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.434-439
    • /
    • 2017
  • Incidence rates of diseases in kiwiberry orchards were investigated monthly from late June to late September in Gwangyang and Boseong in 2015 and 2016. The impact of postharvest fruit rot was investigated during ripening after harvest. Bacterial canker was only observed on one single tree in 2015, but black rot, powdery mildew, leaf spot and blight, and postharvest fruit rot diseases were problematic throughout the study period in both 2015 and 2016. Incidence rates of the diseases varied with kiwiberry cultivar, region and sampling time. Incidence rates of powdery mildew, leaf spot and blight diseases increased significantly during the late growing stages near fruit harvest, while black rot peaked in late August. Incidence rate of postharvest fruit rot on fruit without fruit stalks was less than half of fruit with fruit stalks, regardless of kiwiberry cultivars. Among the four cultivars, Mansu was relatively resistant to black rot and postharvest fruit rot diseases. In our knowledge, this is the first report of various potential pathogens of kiwiberry in Korea.

Hexanal Vapor Induced Resistance against Major Postharvest Pathogens of Banana (Musa acuminata L.)

  • Dhakshinamoorthy, Durgadevi;Sundaresan, Srivignesh;Iyadurai, Arumukapravin;Subramanian, Kizhaeral Sevathapandian;Janavi, Gnanaguru Janaki;Paliyath, Gopinathan;Subramanian, Jayasankar
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2020
  • Hexanal, a C-6 aldehyde has been implicated to have antimicrobial properties. Hence, this study was conducted to determine the antifungal activities of hexanal vapor against major postharvest pathogens of banana viz., Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The pathogens were cultured in vitro and exposed to hexanal vapor at 600, 800, 1,000 and 1,200 ppm. Mycelial growth of both fungal pathogens were inhibited completely at 800 ppm and the incidence of anthracnose and stem-end rot diseases reduced by 75.2% and 80.2%, respectively. The activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and glucanase had transiently increased in hexanal vapor treated banana by 5 to 7 days and declined thereafter. Postharvest treatment of banana with hexanal vapor resulted in phospholipase D inhibition and also resulted in cell wall thickening of the treated fruit, which impeded the penetration of the pathogenic spores. This was further confirmed by scanning electron micrographs. The defense-related protein intermediaries had increased in hexanal vapor treated banana fruit, which suggests induced resistance against C. gloeosporioides and L. theobromae, via., the phenylpropanoid pathway which plays a significant role in hindering the pathogen quiescence. Delayed ripening due to inhibition of phospholipase D enzyme, inhibition of mycelial growth and induced systemic resistance by defense enzymes collectively contributed to the postharvest disease reduction and extended shelf life of fruit.

Antagonistic Activity of Bacteria Isolated from Apple in Different Fruit Development Stages against Blue Mold Caused by Penicillium expansum

  • Lopez-Gonzalez, Rocio Crystabel;Juarez-Campusano, Yara Suhan;Rodriguez-Chavez, Jose Luis;Delgado-Lamas, Guillermo;Medrano, Sofia Maria Arvizu;Martinez-Peniche, Ramon Alvar;Pacheco-Aguilar, Juan Ramiro
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.24-35
    • /
    • 2021
  • Blue mold caused by Penicillium expansum is one of the most significant postharvest diseases of apples. Some microorganisms associated with the surface of ripening apples possess the ability to inhibit the growth of P. expansum. However, the existing literature about their colonization in the stages before ripening is not explored in depth. This study aims to characterize the antagonistic capacity of bacterial populations from five fruit development stages of 'Royal Gala' apples. The results have shown that the density of the bacterial populations decreases throughout the ripening stages of fruit (from 1.0 × 105 to 1.1 × 101 cfu/㎠). A total of 25 bacterial morphotypes (corresponding to five genera identified by 16S RNA) were differentiated in which Bacillus stood out as a predominant genus. In the in vitro antagonism tests, 10 Bacillus strains (40%) inhibited the mycelial growth of P. expansum from 30.1% to 60.1%, while in fruit bioassays, the same strains reduced the fruit rot ranging from 12% to 66%. Moreover, the bacterial strains with antagonistic activity increased in the ripening fruit stage. B. subtilis subsp. spiziennii M24 obtained the highest antagonistic activity (66.9% of rot reduction). The matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that bacteria with antagonistic activity produce anti-fungal lipopeptides from iturin and fengycin families.