• 제목/요약/키워드: post-transcriptional regulation

검색결과 92건 처리시간 0.024초

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Roles of MicroRNA-21 and MicroRNA-29a in Regulating Cell Adhesion Related Genes in Bone Metastasis Secondary to Prostate Cancer

  • Mohamad, Maisarah;Wahab, Norhazlina Abdul;Yunus, Rosna;Murad, Nor AzianAbdul;Zainuddin, Zulkifli Md;Sundaram, Murali;Mokhtar, Norfilza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3437-3445
    • /
    • 2016
  • Background: There is an increasing concern in the role of microRNA (miRNA) in the pathogenesis of bone metastasis (BM) secondary to prostate cancer (CaP). In this exploratory study, we hypothesized that the expression of vinculin (VCL) and chemokine X3C ligand 1 (CX3CL1) might be down-regulated in clinical samples, most likely due to the post-transcriptional modification by microRNAs. Targeted genes would be up-regulated upon transfection of the bone metastatic prostate cancer cell line, PC3, with specific microRNA inhibitors. Materials and Methods: MicroRNA software predicted that miR-21 targets VCL while miR-29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalin-fixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE-1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels. Results: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down-regulated while CX3CL1 was up-regulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly upregulated while CX3CL1 mRNA was significantly down-regulated compared to the RWPE-1 case. Conclusions: The down-regulation of VCL in FFPE specimens is most likely regulated by miR-21 based on the in vitro evidence but the exact mechanism of how miR-21 can regulate VCL is unclear. Up-regulated in CaP, CX3CL1 was found not regulated by miR-29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNA-mRNA interactions may provide additional knowledge for individualized study of cancers.

염증성 장질환 모델 및 크론병 환자에서의 점막상피 HuR 단백질의 변화 분석 (Tissue Distribution of HuR Protein in Crohn's Disease and IBD Experimental Model)

  • 최혜진;박재홍;박지연;김주일;박성환;오창규;도기헌;송보경;이승준;문유석
    • 생명과학회지
    • /
    • 제24권12호
    • /
    • pp.1339-1344
    • /
    • 2014
  • 염증성 장질환은 점막의 만성적 궤양과 염증을 동반하는 면역질환으로 알려져 있으며, 특히 TNF${\alpha}$와 같은 염증성 사이토카인은 주요한 생물학적 치료의 표적으로 이용되고 있다. 염증성 사이토카인의 유전자발현에서 전사물의 안정화는 매우 중요한 조절과정이며, 특히 본 연구에서는 이 안정화에 핵심적인 단백질인 HuR의 발현과 조직 분포에 대하여 동물모델과 환자의 조직에서 분석하였다. DSS를 처리함으로 유도되는 장염증 동물 모델에서 HuR 단백질의 발현량이 높았음을 확인했고, 점막의 상피조직 및 선조직 상피세포에서 상대적인 발현이 증대되었다. 또한 단백질의 활성측면에서 세포질로 이동된 HuR 단백질의 양도 상대적으로 증가하였다. 공간분포적으로 보면 DSS에 의한 화학적 점막자극에 의하여 초기에는 villi 하부에서의 발현정도가 상대적으로 villus 말단에 비하여 높게 유지되었다. 크론병 환자의 생검을 통하여 정상부위와 병변부위에서 HuR 단백질을 비교분석 하였다. 크론병 환자들의 병변에서는 지속적으로 HuR의 발현이 증대되어 있음을 확인했으며, 동물조직과 유사하게 병변부위의 장관상피세포 및 선 상피에서 주로 발현양이 높았다. 이러한 결과는 염증성 장질환에서의 HuR 단백질이 초기 염증성 인자의 발현에 중요한 역할이 예상되며, 구체적인 분자기전의 규명도 향후 기대된다. 이를 근간으로 하여 염증성 장질환의 진단과 치료의 표적개발에서 유용하게 응용하고자 한다.

Prognostic Significance of Hes-1, a Downstream Target of Notch Signaling in Hepatocellular Carcinoma

  • Zou, Jing-Huai;Xue, Tong-Chun;Sun, Chun;Li, Yan;Liu, Bin-Bin;Sun, Rui-Xia;Chen, Jie;Ren, Zheng-Gang;Ye, Sheng-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3811-3816
    • /
    • 2015
  • Background: Hairy and enhancer of split 1 (Hes-1) protein is a downstream target of Notch signaling and is a basic helix-loop-helix transcriptional repressor. However, definitive evidence for a role in hepatocellular carcinoma (HCC) cells has not been reported. Here, Hes-1 was revealed to an important component of the Notch signaling cascade in HCC cell lines possessing different potential for lung metastasis. Materials and Methods: RNAi mediated by plasmid constructs was used to analyze the role of Hes-1 in MHCC-97L HCC cells by assessing proliferation, apoptosis, cell migration and matrigel invasion following transfection. Hes-1 protein expression analysis in HCC tissue was also conducted by immunohistochemistry. Results: Our studies revealed that Hes-1 was decreased in HCC cell lines with higher lung metastasis potential at both the mRNA and protein levels. Down-regulation of the Hes-1 gene in MHCC-97L cells resulted in increased cell proliferation, reduced apoptosis and increased migration and invasion. Conclusions: Hes-1 has potential prognostic value in post-surgical HCC patients and may be an independent prognostic indicator for overall survival and tumor recurrence. These findings have important implications for understanding the mechanisms by which Hes-1 participates in tumor proliferation and invasion.

Apolipoprotein A5 3'-UTR variants and cardiometabolic traits in Koreans: results from the Korean genome and epidemiology study and the Korea National Health and Nutrition Examination Survey

  • Kim, Oh Yoen;Moon, Jiyoung;Jo, Garam;Kwak, So-Young;Kim, Ji Young;Shin, Min-Jeong
    • Nutrition Research and Practice
    • /
    • 제12권1호
    • /
    • pp.61-68
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: This study aimed to test the association between APOA5 3'-UTR variants (rs662799) and cardiometabolic traits in Koreans. SUBJECTS/METHODS: For this study, epidemiological data, Apolipoprotein A5 (APOA5) genotype information, and lymphoblastoid cell line (LCL) biospecimens from a subset of the Ansung-Ansan cohort within the Korean Genome and Epidemiology study (KoGES-ASAS; n = 7,704) as well as epidemiological data along with genomic DNA biospecimens of participants from a subset of the Korea National Health and Nutrition Examination Survey (KNHANES 2011-12; n = 2,235) were obtained. APOA5 mRNA expression was also measured. RESULTS: APOA5 rs662799 genotype distributions in both the KoGES-ASAS and KNHANES groups were 50.6% for TT, 41.3% for TC, and 8.1% for CC, which are similar to those in previous reports. In both groups, minor C allele carriers, particularly subjects with CC homozygosity, had lower high-density lipoprotein (HDL) cholesterol and higher triglyceride levels than TT homozygotes. Linear regression analysis showed that the minor C allele significantly contributed to reduction of circulating HDL cholesterol levels [${\beta}=-2.048$, P < 0.001; ${\beta}=-2.199$, P < 0.001] as well as elevation of circulating triglyceride levels [${\beta}=0.053$, P < 0.001; ${\beta}=0.066$, P < 0.001] in both the KoGES-ASAS and KNHANES groups. In addition, higher expression levels of APOA5 in LCLs of 64 healthy individuals were negatively associated with body mass index (r = -0.277, P = 0.027) and circulating triglyceride level (r = -0.340, P = 0.006) but not significantly correlated with circulating HDL cholesterol level. On the other hand, we observed no significant difference in the mRNA level of APOA5 according to APOA5 rs662799 polymorphisms. CONCLUSIONS: The C allele of APOA5 rs662799 was found to be significantly associated with cardiometabolic traits in a large Korean population from the KoGES-ASAS and KNHANES. The effect of this genotype may be associated with post-transcriptional regulation, which deserves further experimental confirmation.

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq

  • Lazar, Prettina;Lee, Yun-O;Kim, Song-Mi;Chandrasekaran, Meganathan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1519-1526
    • /
    • 2010
  • The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.

miR-380-3p promotes β-casein expression by targeting αS1-casein in goat mammary epithelial cells

  • Ning Song;Jun Luo;Lian Huang;Xiaoying Chen;Huimin Niu;Lu Zhu
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1488-1498
    • /
    • 2023
  • Objective: αS1-Casein is more closely associated with milk allergic reaction than other milk protein components. microRNA (miRNA) is a class of small non-coding RNAs that modulate multiple biological progresses by the target gene. However, the post-transcriptional regulation of αS1-casein expression by miRNA in ruminants remains unclear. This study aims to explore the regulatory roles of miR-380-3p on αS1-casein synthesis in goat mammary epithelial cells (GMEC). Methods: αS1-Casein gene and miR-380-3p expression was measured in dairy goat mammary gland by quantitative real-time polymerase chain reaction (qRT-PCR). miR-380-3p overexpression and knockdown were performed by miR-380-3p mimic or inhibitor in GMEC. The effect of miR-380-3p on αS1-casein synthesis was detected by qRT-PCR, western blot, luciferase and chromatin immunoprecipitation assays in GMEC. Results: Compared with middle-lactation period, αS1-casein gene expression is increased, while miR-380-3p expression is decreased during peak-lactation of dairy goats. miR-380-3p reduces αS1-casein abundance by targeting the 3'-untranslated region (3'UTR) of αS1-casein mRNA in GMEC. miR-380-3p enhances β-casein expression and signal transducer and activator of transcription 5a (STAT5a) activity. Moreover, miR-380-3p promotes β-casein abundance through target gene αS1-casein, and activates β-casein transcription by enhancing the binding of STAT5 to β-casein gene promoter region. Conclusion: miR-380-3p decreases αS1-casein expression and increases β-casein expression by targeting αS1-casein in GMEC, which supplies a novel strategy for reducing milk allergic potential and building up milk quality in ruminants.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

Temporal Transcriptome Analysis of SARS-CoV-2-Infected Lung and Spleen in Human ACE2-Transgenic Mice

  • Jung Ah, Kim;Sung-Hee, Kim;Jung Seon, Seo;Hyuna, Noh;Haengdueng, Jeong;Jiseon, Kim;Donghun, Jeon;Jeong Jin, Kim;Dain, On;Suhyeon, Yoon;Sang Gyu, Lee;Youn Woo, Lee;Hui Jeong, Jang;In Ho, Park;Jooyeon, Oh;Sang-Hyuk, Seok;Yu Jin, Lee;Seung-Min, Hong;Se-Hee, An;Joon-Yong, Bae;Jung-ah, Choi;Seo Yeon, Kim;Young Been, Kim;Ji-Yeon, Hwang;Hyo-Jung, Lee;Hong Bin, Kim;Dae Gwin, Jeong;Daesub, Song;Manki, Song;Man-Seong, Park;Kang-Seuk, Choi;Jun Won, Park;Jun-Won, Yun;Jeon-Soo, Shin;Ho-Young, Lee;Jun-Young, Seo;Ki Taek, Nam;Heon Yung, Gee;Je Kyung, Seong
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.896-910
    • /
    • 2022
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.

벼 종자에서 액포막 aquaporin (tonoplast intrinsic protein) 유전자의 발현과 기능 (Functional implications of gene expression analysis from rice tonoplast intrinsic proteins during seed germination and development)

  • 허선미;이인숙;김범기;신영섭;이강섭;김둘이;변명옥;김동헌;윤인선
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.517-528
    • /
    • 2010
  • 종자 발달과 발아는 수분과 양분 함량의 급격한 변화를 수반하는 복합적인 과정이다. 본 연구에서는 유전자 발현과 단백질 구조 비교 분석을 통해 벼 종자의 발아와 발달과정에 관여하는 액포막 aquaporin (tonoplast intrinsic protein)을 규명하였다. OsTIP3;1, OsTIP3;2는 종자 특이적인 TIP로 종자가 성숙되는 시기에 발현되었다가, 종자가 발아하면서 전사체가 사라지는 양상을 보였으며, ABA 처리에 의해 발현이 유도되었다. 단백질 구조 예측 결과로부터 OsTIP3;1, OsTIP3;2가 단백질의 N-말단, B와 E loop에 다른 TIP와 뚜렷이 구분되는 인산화 잔기 특징을 확인하였다. OsTIP2;1과 OsTIP4;3은 종자가 발달하는 과정에서 유전자 발현이 감소하였다가, 종자 발아 후기에 뿌리와 배축의 신장이 활발한 시기에 발현이 급증하였다. 특히 OsTIP2;1은 뿌리에서 강한 발현을 보였으므로, 뿌리 생장에 필요한 팽압 공급에 중요한 기능을 할 것으로 제안된다. OsTIP2;1과 OsTIP4;3 단백질의 N-말단에는 특징적으로 메틸화 (methylation) 가능성이 높은 아미노산 잔기가 예측되었다. OsTIP2;2는 OsTIP2;1과는 달리 종자 침윤 후 7시간 이내에 발현이 빠르게 유도되며, 발아가 억제되는 조건에서도 유전자 발현이 유지되는 것으로 보아 종자의 초기 수화 과정에 관여할 것으로 추측된다. OsTIP2;2 단백질의 N-말단에는 OsTIP2;1에 존재하는 인산화 Ser 잔기와 메틸화 잔기가 결실된 특징을 보였다. 이런 결과들은 벼 종자의 발달과 발아 과정에서 나타나는 액포의 종류와 기능에 따라 서로 다른 TIP가 선택적으로 유전자 발현수준에서 조절되며, 인산화, 메틸화 등 단백질 수식에 의한 활성조절 기작 역시 매우 다르다는 것을 시사한다.