• 제목/요약/키워드: post-transcriptional regulation

검색결과 92건 처리시간 0.021초

New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis

  • Yoon, Gyeong Mee
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.597-603
    • /
    • 2015
  • Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.

대두 저장단백질 유전자의 발현 조절 메카니즘 (Regulation Mechanism of Soybean Storage Protein Gene Expression)

  • 최양도;김정호
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.283-307
    • /
    • 1987
  • Glycinin and $\beta$-conglycinin are the most abundant storage protein in soybean. These proteins are known to be synthesized predominantly during germination and cell expansion phase of seed development for short period, and synthesized not in other tissues. Genes encoding these storage proteins are useful system to study the mechanism of development stage and tissue specific gene expression in eukaryotes, especially plants, at the molecular level. The cDNA and genomic clones coding for glycinin have been isolated and regulation mechanism of the gene expression has been studied. Initially, development and tissue-specific expression of the glycinin gene is regulated at the level of transcription. Post-transcriptional processing is also responsible for delayed accumulation of the mRNA. Translational control of the storage protein gene has not been reported. Post-translational modification is another strategic point to regulate the expression of the gene. It is possible to identify positive and/or negative reguratory clements in vivo by producing transgenic plants agter gene manipulation. Elucidation of activation and repression mechanism of soybean storage protein genes will contribute to the understanding of the other plant and eukaryotic genes at molecular level.

  • PDF

Telomerase Activity is Constitutively Expressed in the Murine $CD8^+$ T Cells and Controlled Transcriptionally and Post-Translationally

  • Kim, SoJung;Kim, MiHyung;Kim, KilHyoun
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.166-175
    • /
    • 2004
  • Background: Telomerase, a ribonucleoprotein enzyme capable of synthesizing telomeric repeats, attracts attention for its possible role in determining the replicative capacity of normal somatic cells, transformed cells, and cells of the germline lineage. Differently from normal somatic cells with no telomerase activity, normal lymphocytes has been reported to have telomerase activity comparable to that found in transformed cells during development and activation, which substantiate a role in supporting the capacity of lymphocytes for extensive clonal expansion. Methods: Here, in order to define the telomerase regulation in murine T lymphocytes, telomerase activity in cloned murine $CD8^+$ T cells and naive $CD8^+$ T cells isolated from C57BL/6 mice was examined. Next, the regulatory mechanism of telomerase activity at transcriptional and post- translational levels was investigated by determining the expression level of the TERT protein, a key component for telomerase activity. Results: It was demonstrated that telomerase activity was expressed in an inactivated state as well as in an activated state in the murine $CD8^+$ T lymphocytes by using TRAP assay. The increase of telomerase activity was partially dependent on the net increase of TERT expression. Also, telomerase activity was decreased after treatment with protein kinase inhibitors, indicating that telomerase activation was prevented by inhibition of phosphorylation. Conclusion: Therefore, these results suggest that telomerase activity is constitutively expressed in the murine resting T lymphocytes and controlled by both transcriptional regulation and post- ranslational modifications.

MiR-146 and miR-125 in the regulation of innate immunity and inflammation

  • Lee, Hye-Mi;Kim, Tae Sung;Jo, Eun-Kyeong
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.311-318
    • /
    • 2016
  • Innate immune responses are primary, relatively limited, and specific responses to numerous pathogens and toxic molecules. Protein expression involved in these innate responses must be tightly regulated at both transcriptional level and post-transcriptional level to avoid the development of excessive inflammation that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs (∼22 nucleotides [nts]) that participate in the regulation of numerous physiological responses by targeting specific messenger RNAs to suppress their translation. Recent work has shown that several negative regulators of transcription including microRNAs play important roles in inhibiting the exacerbation of inflammatory responses and in the maintenance of immunological homeostasis. This emerging research area will provide new insights on how microRNAs regulate innate immune signaling. It might show that dysregulation of microRNA synthesis is associated with the pathogenesis of inflammatory and infectious diseases. In this review, we focused on miR-146 and miR-125 and described the roles these miRNAs in modulating innate immune signaling. These microRNAs can control inflammatory responses and the outcomes of pathogenic infections.

Tissue Specific Expression Levels of Apoptosis Involved Genes Have Correlations with Codon and Amino Acid Usage

  • Hajjari, Mohammadreza;Sadeghi, Iman;Salavaty, Abbas;Nasiri, Habib;Birgani, Maryam Tahmasebi
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.234-240
    • /
    • 2016
  • Different mechanisms, including transcriptional and post transcriptional processes, regulate tissue specific expression of genes. In this study, we report differences in gene/protein compositional features between apoptosis involved genes selectively expressed in human tissues. We found some correlations between codon/amino acid usage and tissue specific expression level of genes. The findings can be significant for understanding the translational selection on these features. The selection may play an important role in the differentiation of human tissues and can be considered for future studies in diagnosis of some diseases such as cancer.

SR Proteins: Binders, Regulators, and Connectors of RNA

  • Jeong, Sunjoo
    • Molecules and Cells
    • /
    • 제40권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Serine and arginine-rich (SR) proteins are RNA-binding proteins (RBPs) known as constitutive and alternative splicing regulators. As splicing is linked to transcriptional and post-transcriptional steps, SR proteins are implicated in the regulation of multiple aspects of the gene expression program. Recent global analyses of SR-RNA interaction maps have advanced our understanding of SR-regulated gene expression. Diverse SR proteins play partially overlapping but distinct roles in transcription-coupled splicing and mRNA processing in the nucleus. In addition, shuttling SR proteins act as adaptors for mRNA export and as regulators for translation in the cytoplasm. This mini-review will summarize the roles of SR proteins as RNA binders, regulators, and connectors from transcription in the nucleus to translation in the cytoplasm.

Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation

  • Giraud, Guillaume;Terrone, Sophie;Bourgeois, Cyril F.
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.613-622
    • /
    • 2018
  • RNA helicases DDX5 and DDX17 are multitasking proteins that regulate gene expression in different biological contexts through diverse activities. Special attention has long been paid to their function as coregulators of transcription factors, providing insight about their functional association with a number of chromatin modifiers and remodelers. However, to date, the variety of described mechanisms has made it difficult to understand precisely how these proteins work at the molecular level, and the contribution of their ATPase domain to these mechanisms remains unclear as well. In light of their association with long noncoding RNAs that are key epigenetic regulators, an emerging view is that DDX5 and DDX17 may act through modulating the activity of various ribonucleoprotein complexes that could ensure their targeting to specific chromatin loci. This review will comprehensively describe the current knowledge on these different mechanisms. We will also discuss the potential roles of DDX5 and DDX17 on the 3D chromatin organization and how these could impact gene expression at the transcriptional and post-transcriptional levels.

Small RNA biology is systems biology

  • Jost, Daniel;Nowojewski, Andrzej;Levine, Erel
    • BMB Reports
    • /
    • 제44권1호
    • /
    • pp.11-21
    • /
    • 2011
  • During the last decade small regulatory RNA (srRNA) emerged as central players in the regulation of gene expression in all kingdoms of life. Multiple pathways for srRNA biogenesis and diverse mechanisms of gene regulation may indicate that srRNA regulation evolved independently multiple times. However, small RNA pathways share numerous properties, including the ability of a single srRNA to regulate multiple targets. Some of the mechanisms of gene regulation by srRNAs have significant effect on the abundance of free srRNAs that are ready to interact with new targets. This results in indirect interactions among seemingly unrelated genes, as well as in a crosstalk between different srRNA pathways. Here we briefly review and compare the major srRNA pathways, and argue that the impact of srRNA is always at the system level. We demonstrate how a simple mathematical model can ease the discussion of governing principles. To demonstrate these points we review a few examples from bacteria and animals.