• 제목/요약/키워드: post-peak strength

검색결과 139건 처리시간 0.022초

2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests

  • Vaziri, Mojtaba Rabiei;Tavakoli, Hossein;Bahaaddini, Mojtaba
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.117-133
    • /
    • 2022
  • Determination of the mechanical behaviour of jointed rock masses has been a challenge for rock engineers for decades. This problem is more pronounced for non-persistent jointed rock masses due to complicated interaction of rock bridges on the overall behaviour. This paper aims to study the effect of a non-persistent joint set configuration on the mechanical behaviour of rock materials under both uniaxial and biaxial compression tests using a discrete element code. The numerical simulation of biaxial compressive strength of rock masses has been challenging in the past due to shortcomings of bonded particle models in reproducing the failure envelope of rock materials. This problem was resolved in this study by employing the flat-joint contact model. The validity of the numerical model was investigated through a comprehensive comparative study against physical uniaxial and biaxial compression experiments. Good agreement was found between numerical and experimental tests in terms of the recorded peak strength and the failure mode in both loading conditions. Studies on the effect of joint orientation on the failure mode showed that four zones of intact, transition to block rotation, block rotation and transition to intact failure occurs when the joint dip angle varies from 0° to 90°. It was found that the applied confining stress can significantly alter the range of these zones. It was observed that the minimum strength occurs at the joint dip angle of around 45 degrees under different confining stresses. It was also found that the joint orientation can alter the post peak behaviour and the lowest brittleness was observed at the block rotation zone.

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • 제89권6호
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.

A minimum ductility design method for non-rectangular high-strength concrete beams

  • Au, F.T.K.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.115-130
    • /
    • 2004
  • The flexural ductility of solid rectangular reinforced concrete beams has been studied quite extensively. However, many reinforced concrete beams are neither solid nor rectangular; examples include T-, ${\Gamma}$-, ${\Pi}$- and box-shaped beams. There have been few studies on the flexural ductility of non-rectangular reinforced concrete beams and as a result little is known about the possible effect of sectional shape on flexural ductility. Herein, the effect of sectional shape on the post-peak flexural behaviour of reinforced normal and high-strength concrete beams has been studied using a newly developed analysis method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the stress-strain curve of the steel reinforcement. It was revealed that the sectional shape could have significant effect on the flexural ductility of a concrete beam and that the flexural ductility of a T-, ${\Gamma}$-, ${\Pi}$- or box-shaped beam is generally lower than that of a solid rectangular beam with the same overall dimensions and the same amount of reinforcement provided. Based on the numerical results obtained, a simple method of ensuring the provision of a certain minimum level of flexural ductility to non-rectangular concrete beams has been developed.

Behavior of short columns constructed using engineered cementitious composites under seismic loads

  • Syed Humayun Basha;Xiaoqin Lian;Wei Hou;Pandeng Zheng;ZiXiong Guo
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.565-582
    • /
    • 2023
  • The present research reports the application of engineered cementitious composites (ECC) as an alternative to conventional concrete to improve the seismic behavior of short columns. Experimental and finite element investigation was conducted by testing five reinforced engineered cementitious composite (RECC) concrete columns (half-scale specimens) and one control reinforced concrete (RC) specimen for different shear-span and transverse reinforcement ratios under cyclic lateral loads. RECC specimens with higher shear-span and transverse reinforcement ratios demonstrated a significant effect on the column lateral load behavior by improving ductility (>5), energy dissipation capacity (1.2 to 4.1 times RC specimen), gradual strength degradation (ultimate drift >3.4%), and altering the failure mode. The self-confinement effect of ECC fibers maintained the integrity in the post-peak region and reserved the transmission of stress through fibers without noticeable degradation in strength. Finite element modeling of RECC specimens under monotonic incremental loads was carried out by adopting simplified constitutive material models. It was apprehended that the model simulated the global response (strength and stiffness) and damage crack patterns reasonably well.

Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT

  • Wookon Son;MinWoo Kim;Jae-Yeon Hwang;Young-Woo Kim;Chankue Park;Ki Seok Choo;Tae Un Kim;Joo Yeon Jang
    • Korean Journal of Radiology
    • /
    • 제23권7호
    • /
    • pp.752-762
    • /
    • 2022
  • Objective: To compare a deep learning-based reconstruction (DLR) algorithm for pediatric abdominopelvic computed tomography (CT) with filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Materials and Methods: Post-contrast abdominopelvic CT scans obtained from 120 pediatric patients (mean age ± standard deviation, 8.7 ± 5.2 years; 60 males) between May 2020 and October 2020 were evaluated in this retrospective study. Images were reconstructed using FBP, a hybrid IR algorithm (ASiR-V) with blending factors of 50% and 100% (AV50 and AV100, respectively), and a DLR algorithm (TrueFidelity) with three strength levels (low, medium, and high). Noise power spectrum (NPS) and edge rise distance (ERD) were used to evaluate noise characteristics and spatial resolution, respectively. Image noise, edge definition, overall image quality, lesion detectability and conspicuity, and artifacts were qualitatively scored by two pediatric radiologists, and the scores of the two reviewers were averaged. A repeated-measures analysis of variance followed by the Bonferroni post-hoc test was used to compare NPS and ERD among the six reconstruction methods. The Friedman rank sum test followed by the Nemenyi-Wilcoxon-Wilcox all-pairs test was used to compare the results of the qualitative visual analysis among the six reconstruction methods. Results: The NPS noise magnitude of AV100 was significantly lower than that of the DLR, whereas the NPS peak of AV100 was significantly higher than that of the high- and medium-strength DLR (p < 0.001). The NPS average spatial frequencies were higher for DLR than for ASiR-V (p < 0.001). ERD was shorter with DLR than with ASiR-V and FBP (p < 0.001). Qualitative visual analysis revealed better overall image quality with high-strength DLR than with ASiR-V (p < 0.001). Conclusion: For pediatric abdominopelvic CT, the DLR algorithm may provide improved noise characteristics and better spatial resolution than the hybrid IR algorithm.

Compressive and flexural behaviors of ultra-high strength concrete encased steel members

  • Du, Yong;Xiong, Ming-Xiang;Zhu, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.849-864
    • /
    • 2019
  • One way to achieve sustainable construction is to reduce concrete consumption by use of more sustainable and higher strength concrete. Modern building codes do not cover the use of ultra-high strength concrete (UHSC) in the design of composite structures. Against such background, this paper investigates experimentally the mechanical properties of steel fibre-reinforced UHSC and then the structural behaviors of UHSC encased steel (CES) members under both concentric and eccentric compressions as well as pure bending. The effects of steel-fibre dosage and spacing of stirrups were studied, and the applicability of Eurocode 4 design approach was checked. The test results revealed that the strength of steel stirrups could not be fully utilized to provide confinement to the UHSC. The bond strength between UHSC and steel section was improved by adding the steel fibres into the UHSC. Reducing the spacing of stirrups or increasing the dosage of steel fibres was beneficial to prevent premature spalling of the concrete cover thus mobilize the steel section strength to achieve higher compressive capacity. Closer spacing of stirrups and adding 0.5% steel fibres in UHSC enhanced the post-peak ductility of CES columns. It is concluded that the code-specified reduction factors applied to the concrete strength and moment resistance can account for the loss of load capacity due to the premature spalling of concrete cover and partial yielding of the encased steel section.

Experimental behavior of VHSC encased composite stub column under compression and end moment

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Mei, Liu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.69-83
    • /
    • 2019
  • This paper investigates the structural behavior of very high strength concrete encased steel composite columns via combined experimental and analytical study. The experimental programme examines stub composite columns under pure compression and eccentric compression. The experimental results show that the high strength encased concrete composite column exhibits brittle post peak behavior and low ductility but has acceptable compressive resistance. The high strength concrete encased composite column subjected to early spalling and initial flexural cracking due to its brittle nature that may degrade the stiffness and ultimate resistance. The analytical study compares the current code methods (ACI 318, Eurocode 4, AISC 360 and Chinese JGJ 138) in predicting the compressive resistance of the high strength concrete encased composite columns to verify the accuracy. The plastic design resistance may not be fully achieved. A database including the concrete encased composite column under concentered and eccentric compression is established to verify the predictions using the proposed elastic, elastoplastic and plastic methods. Image-oriented intelligent recognition tool-based fiber element method is programmed to predict the load resistances. It is found that the plastic method can give an accurate prediction of the load resistance for the encased composite column using normal strength concrete (20-60 MPa) while the elastoplastic method provides reasonably conservative predictions for the encased composite column using high strength concrete (60-120 MPa).

Numerical simulations of progression of damage in concrete embedded chemical anchors

  • Sasmal, S.;Thiyagarajan, R.;Lieberum, K.H.;Koenders, E.A.B.
    • Computers and Concrete
    • /
    • 제22권4호
    • /
    • pp.395-405
    • /
    • 2018
  • In this paper, the performance of post-installed adhesive bonded anchor embedded in concrete is assessed using numerical simulations. This study aims at studying the influence of parameters on the performance of a chemically bonded anchorage system. Non-linear finite element modelling and simulations are carried out by properly using the material properties and phenomenon. Materials parameters such as characteristic length, fracture energy, damage criteria, tension retention and crack width of concrete and interface characteristics are carefully assigned so as to obtain a most realistic behaviour of the chemical anchor system. The peak strength of two different anchor systems obtained from present numerical studies is validated against experimental results. Furthermore, validated numerical models are used to study the load transferring mechanism and damage progression characteristics of various anchors systems where strength of concrete, strength of epoxy, and geometry and disposition of anchors are the parameters. The process of development of strain in concrete adjacent to the anchor and energy dissipated during the course of damage progression are analysed. Results show that the performance of the considered anchorage system is, though a combined effect of material and geometric parameters, but a clear distinction could be made on the parameters to achieve a desired performance based on strength, slip, strain development or dissipated energy. Inspite the increase in anchor capacity with increase in concrete strength, it brings some undesirable performance as well. Furthermore, the pullout capacity of the chemical anchor system increases with a decrease in disparity among the strength of concrete and epoxy.

휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구 (A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness)

  • 조병욱;유광호;김수만;임두철;이상돈;박연준
    • 터널과지하공간
    • /
    • 제17권5호
    • /
    • pp.411-427
    • /
    • 2007
  • 타당성 있는 터널의 설계 및 경제적 시공을 위해서는 터널해석의 신뢰성이 확보되어야 한다. 이를 위해서는 암반과 지보재의 상호 작용을 포함하여 시공 전반에 걸친 깊은 이해가 필요하다. 본 논문에서는 파괴 이후에도 지보력을 상실하지 않는 강섬유보강 숏크리트의 거동을 적절히 모델링하는 기법을 소개하였다. 강지보재의 지보 효과를 알아보기 위해 3차원 해석을 수행하였으며, 이를 통하여 새로운 하중분담율이 산정되었다. 소성모멘트한계만을 사용한 경우(PML 모델) 숏크리트에 비정상적으로 발생하던 높은 인장응력을 없앨 수 있었고, 파괴 후의 연성 거동을 모사할 수 있었으나 축력의 영향이 고려되지 못하여 실제 거동과의 괴리를 메우기에는 다소 미흡하였다. 따라서 축력과 모멘트 한계를 동시에 고려할 수 있는 방법이 필요하였는데, FLAC의 내장 모델인 liner 모델을 통하여 이러한 거동이 모사될 수 있었다. Liner 모델에서는 강섬유 보강 숏크리트의 일축압축 강도와 더불어 최대 및 잔류 인장강도도 지정이 가능하다. 이 두 가지 모델을 이용하여 4등급 및 5등급 암반에 굴착되는 2차로 터널에 대하여 해석을 수행하였다. 또한 종래에 사용되던 탄성 beam 모델을 이용한 해석도 병행하여 그 결과를 비교하였다. 탄성 beam 모델을 제외한 두 가지 모델은 탄성 beam 모델에서는 반영될 수 없었던 휨인성을 고려할 수 있었다.

토목섬유 interface의 변형율 연화 모델 개발 (Development of Strain-softening Modeling for Interfaces between Geosynthetics)

  • 서민우;박준범;박인준;조남준
    • 한국지반신소재학회논문집
    • /
    • 제2권1호
    • /
    • pp.57-68
    • /
    • 2003
  • Strain-softening model is developed to characterize the interface behavior of geomembrane with geotextile and geosynthetic clay liner(GCL). The model proposed in this research is calibrated by using data from direct shear tests conducted on smooth and textured geomembrane. The research is divided into two regions, pre-peak and post-peak, to take into account of strain-softening effect. Although slight difference between measured and back calculated data is observed under high normal stress, good agreements, in general, are found from back calculations. Especially, good consistency is observed in the case of low normal stress. Based on the results, it can be concluded that the proposed model can be a reasonable constitutive law to figure out the behavior of strain-softening between interfaces of geomembrane. In addition, DSC(Disturbed State Concept) model is also presented for further application in geosynthetic interfaces.

  • PDF