• Title/Summary/Keyword: post-peak strength

Search Result 139, Processing Time 0.028 seconds

Effects of the Number of Hooked Bars on Anchorage Conditions at Exterior Joints (외측 보-기둥 접합부의 정착 상태에 관한 훅크철근의 영향)

  • Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.151-156
    • /
    • 1997
  • An experimental study was performed on the pull-out behavior of 90-deg standard hooks from exterior beam-column connections. The effects of the number of hooked bars of joint area were investigated. Under the pull-out action of hooked bars, the damage and cracking of joint area tends to be more extensive as the number of hooks pulling out from a joint increases. The pull-out strength and post-peak ductility of hooked bar are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at exterior joints.

  • PDF

Effect of axial load on flexural behaviour of cyclically loaded RC columns

  • Au, F.T.K.;Bai, Z.Z.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.261-284
    • /
    • 2006
  • The flexural behaviour of symmetrically reinforced concrete (RC) columns cast of normal- and high-strength concrete under both monotonic and cyclic loading is studied based on an analytical procedure, which employs the actual stress-strain curves and takes into account the stress-path dependence of concrete and steel reinforcement. The analysis is particularly extended into the post-peak stage with large inelastic deformation at various applied axial load level. The effect of axial load on their complete flexural behaviour is then identified based on the results obtained. The axial load is found to have fairly large effect on the flexural behaviour of RC columns under both monotonic and cyclic loading. Such effects are discussed through examination of various aspects including the moment-curvature relationship, moment capacity, flexural ductility, variation of neutral axis depth and steel stress.

Studies of Dapped Ended Beams with Disturbed Regions Containing T-headed bars and Steel fibers (헤디드 바와 강섬유로 보강한 Dapped Ended Beam의 구조 실험)

  • Choi Jin Hyouk;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.39-42
    • /
    • 2005
  • This test program is to investigate the benefits of using headed bars to replace conventional stirrups and using steel fibers to reinforce in the disturbed regions in the dapped ended beam, This distribution of reinforcement was selected for aspects associated with the portion of beam section in bridge structures. The beams containing T-headed bars have a superior performance such as improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. The capacity of DEB with steel fibers also show increase of ductility, shear strength, and crack.

  • PDF

Compression field modeling of confined concrete

  • Montoya, E.;Vecchio, F.J.;Sheikh, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.231-248
    • /
    • 2001
  • The three-dimensional behavior of confined concrete was investigated, including strength enhancement due to triaxial compressive stresses, lateral expansion, compression softening, cover spalling and post-peak ductility. A finite element program based on a nonlinear elasticity methodology was employed to evaluate the ability to model triaxial behavior of reinforced concrete (RC) by combining constitutive models proposed by several researchers. The capability of compression field based models to reproduce the softening behavior of lightly cracked confined concrete was also investigated. Data from tested specimens were used to evaluate the validity of the formulations. Good agreement with the experimental results was obtained.

Seismic behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 1: Experimental study

  • Zhu, Y.;Su, R.K.L.;Zhou, F.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.149-172
    • /
    • 2007
  • An experimental study of five full-scale coupling beam specimens has been conducted to investigate the seismic behavior of strengthened RC coupling beams by bolted side steel plates using a reversed cyclic loading procedure. The strengthened coupling beams are fabricated with different plate thicknesses and shear connector arrangements to study their respective effects on load-carrying capacity, strength retention, stiffness degradation, deformation capacity, and energy dissipation ability. The study revealed that putting shear connectors along the span of coupling beams produces no significant improvement to the structural performance of the strengthened beams. Translational and rotational partial interactions of the shear connectors that would weaken the load-carrying capacity of the steel plates were observed and measured. The hierarchy of failure of concrete, steel plates, and shear connectors was identified. Furthermore, detailed effects of plate buckling and various arrangements of shear connectors on the post-peak behavior of the strengthened beams are discussed.

Isokinetic Effect of the Extensors and Flexors in Total Knee Replacement Patients (슬관절전치환술 환자의 슬관절 신전근 및 굴곡근에 대한 등속성운동 효과)

  • Bae, Sung-Soo;Nam, Kun-Woo;Lee, Keun-Heui
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.19-31
    • /
    • 2001
  • The twenty one individuals with total knee replacement who were admitted to Kang-Dong Hospital for comprehensive physical therapy were studied in order to demonstrate the effectiveness of an isokinetic test program using the Cybex 6000 machine. The subjects were divided into three groups with the isometric exercise group receiving isometric exercise. the isokinetic eccentric exercise group, and isokinetic eccentric exorcise group receiving isokinetic exercise(eccentric. concentric) to knee flexors and extensors muscles for a six weeks period using the Cybex 6000. The results were follow :1 . The peak torque was increased significantly in the flexors and extensors of the isokinetic conccentric exorcise among three groups(p<.05). 2. The progress of peak torque was increased significantly in the flexors and extensors of the isokinetic conccentric exercise among three groups(p<.05). 3. The total work was more increased significantly in the flexors and extensors of the isokinetic conccentric exercise among three groups(p<.05). 4. The progress of total work was more increased significantly in the flexors and extensors of the isokinetic conccentric exercise among three groups(p<;.05). 5. The ratio of endurance was not increased significantly in all three groups. 6. The extensors in the peak torque was likely to recover rapidly than the flexors. 7.The average R.O.M in the pre-exercise and post-exercise was not different significantly in all three groups. According to the above results, In the muscle strength recovery for total knee replacement patients, isokinetic concentric exercise group was significantly greater than the isokinetic eccentric and isometric exercise groups after a six weeks training.

  • PDF

Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber

  • Gullu, Hamza;Fedakar, Halil I.
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • In recent years, the amount of sludge ash (SA) has considerably increased due to rapid urbanization and population growth. In addition, its storage in landfills induces environmental pollution and health problems. Therefore, its disposal in an environmentally friendly way has become more important. The main goal of this study is to investigate the reusability of sludge ash as an additive with polypropylene fiber (PF) to stabilize marginal sand based on the compressive strength performances from UCS tests. For this purpose, a series of UCS tests was conducted. Throughout the experimental study, the used inclusion rates were 10, 15, 20 and 30% for sludge ash and 0, 0.5 and 1% for polypropylene fiber by total dry weight of the sand+sludge ash mixture and the prepared samples were cured for 7 and 14 days prior to the testing. Freezing and thawing resistance of the mixture including 10% sludge ash and 0, 0.5 and 1% polypropylene fiber was also examined. On the basis of UCS testing results, it is said that sludge ash inclusion remarkably enhances UCS performance of sand. Moreover, the addition of polypropylene fiber to the admixtures including sand and sludge ash significantly improves their stress-strain characteristics and post-peak strength loss as well as UCS. As a result of this paper, it is suggested that sludge ash be successfully reused with polypropylene fiber for stabilizing sand in soil stabilization applications. It is also believed that the findings of this study will contribute to some environmental concerns such as the disposal problem of sludge ash, recycling, sustainability, environmental pollution, etc. as well as the cost of an engineering project.

Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

  • Lin, Cheng-Yung;Hsu, Jenn-Chung;Wan, Tien-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.994-1002
    • /
    • 2012
  • An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05) lower in capons after 12 wks of age (caponized treatment after 4 wks) than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05) higher in intact males, while capons had higher (p<0.05) plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05) with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration.

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.