• Title/Summary/Keyword: post-glacial marine transgression

Search Result 3, Processing Time 0.017 seconds

Paleoenvironmental Changes in the Northern East China Sea and the Yellow Sea During the Last 60 ka

  • Nam, Seung-Il;Chang, Jeong-Hae;Yoo, Dong-Geun
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.165-165
    • /
    • 2003
  • A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.

  • PDF

Late Quaternary Stratigraphy and its Depositional History in the Inner Shelf off the Southern Coast, Korea (한국 남해 내 대륙붕 후 제4기 층서 및 퇴적역사)

  • Yoo, Dong-Geun;Lee, Ho-Young;Park, Keun-Pil;Koo, Nam-Hyung;Kim, Jong-Chon
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.243-250
    • /
    • 2005
  • Analysis of high-resolution seismic profiles acquired from the inner shelf off the southern coast of Korea reveals that the inner shelf sequence can be divided into three stratigraphic units formed after the Last Glacial Maximum (LGM). Unit I is characterized by complex seismic facies including semi-transparent, stratified, and hummocky reflections on seismic records. It consists of sandy mud or muddy sand, deposited under estuarine environment during the post-glacial transgression. Unit II acoustically shows semi-transparent or hummocky reflections and consists of sand with gravels and shell debris, produced by shoreface erosion during the transgression. Unit III is characterized by transparent or semi-transparent seismic facies and consists of mud originated from the Nakdong and Seomjin rivers during recent highstand of sea level. Unit III is confined to the inner shelf with an extenal form of stratal wedge.

Holocene sea-level rise and paleoenvironmental changes in Korea Strait shelf (대한해협 대륙붕 해역의 홀로세 해수면 상승과 고환경변화)

  • 남승일;장정해;공기수;김성필;유동근
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.1
    • /
    • pp.7-16
    • /
    • 2003
  • A 31m-long sediment core (SSDP-102) was taken from the inner shelf (about 40m water-depth) off the northwestern coast of the Korea Strait. Detailed lithofacies and organic-geochemical analyses were performed to establish a high-resolution stratigraphy in the Korea Strait shelf and to reconstruct the paleoenvironmental changes associated with the Holocene marine transgression. The stratigraphic framework of the core was primarily established using 6 AMS $^{14}C$ ages. The sedimentary record of the core SSDP-102 allows for the reconstruction of the paleoenvironmental changes during the last 12.1 ka BP. According to the high-resolution seismic reflection profiles, lithofacies and organic-geochemical data, the core SSDP-102 can be divided into three units (III to I in ascending order) above the acoustic basement. The three units reflect distinct changes of depositional environments resulted from the post-glacial marine transgression. Therefore, it is suggested that three phases of sea-level change have occurred within the inner shelf of the Korea Strait following the Holocene marine transgression. (1) estuarine environments from ca. 12.1 to 6.2 ka BP; (2) near-shore environments with a period of decreased rising of sea level between 6.2 and 5.1 ka BP; (3) near-shore to modem marine environments after 5.1 ka BP. In particular, the present marine conditions influenced by the warm Tsushima Current have been gradually established after ca. 5.1 ka BP.

  • PDF